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Abstract

Many fields of endeavor require humans to conduct manual control tasks while

viewing a perspective scene. Manual control refers to tasks in which continuous,

or nearly continuous, control adjustments are required. Examples include flying an

aircraft, driving a car, and riding a bicycle. Perspective scenes can arise through

natural viewing of the world, simulation of a scene (as in flight sinmlators), or through

imaging devices (such as the cameras on an unmanned aerospace vehicle).

Designers frequently have some degree of control over the content and character-

istics of a perspective scene; airport designers can choose runway markings, vehicle

designers can influence the size and shape of windows, as well as the location of the

pilot, and simulator database designers can choose scene complexity and content. Lit-

tle theoretical framework exists to help designers determine the answers to questions

related to perspective scene content. An empirical approach is most commonly used

to determine optinmm perspective scene configurations.

The goal of the research effort described in this dissertation has been to provide a

tool for modeling the characteristics of hmnan operators conducting manual control

tasks with perspective-scene viewing. This is done for the purpose of providing an

algorithmic, as opposed to empirical, method for analyzing the effects of changing

perspective scene content for closed-loop manual control tasks.

The dissertation contains the development of a model of mmmal control using a

perspective scene, called the Visual Cue Control (VCC) Model. Two forms of model

were developed: one model presumed that the operator obtained both position and

velocity information from one visual cue, and the other model presumed that the

operator used one visual cue for position, and another for velocity.

The models were compared and validated in two experiments. The results show

that the two-cue VCC model accurately characterizes the output of the human oper-

ator with a variety of perspective scenes. The potential of using the model for visual

cue identification was also investigated, with promising results. A third experiment

was performed to compare perspective displays with more conventional display types.
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Chapter 1

Introduction

Little is known about how humans extract information from a perspective scene, par-

ticularly to perform closed-loop manual control tasks. Examples of perspective scenes

include computer generated imagery (commonly used in simulators), camera images,

and natural viewing of a scene (such as out of the window of an aircraft). Manual

control refers to activities in which the hmnan makes nearly continuous adjustments

to a controlled element (e.g. aircraft) through a control inceptor (e.g. joystick), in

order to produce some desired outcome (e.g. tracking or regulation).

Better understanding of how humans use information in a perspective scene can

be important for several reasons. The content of a perspective scene is often a design

choice. Airport and heliport markings constitute manipulation of perspective-scene

content for real-world applications. Designers of simulators and associated databases

for out-the-window scene generation make choices concerning scene content, complex-

ity and update rate. And designers of unmanned aerospace vehicle (UAV) control

systems have choices to make concerning the field of view, resolution, dynamic range,

and update rates of imaging technologies. Currently, decisions related to perspective-

scene content are frequently made with an empirical approach, in which multiple

potential configurations are tested. Very little theoretical framework exists to enable

designers to make informed a przori decisions in these types of applications.

The purpose of the research described herein was to advance the flmdamental

knowledge of this subject, and from there to develop a basic new tool to aid in the



design of the most cogent perspective-scene content. Specifically, this dissertation

describes an experimental program in which a new methodology for modeling and

identification of visual-cue usage in a manual control task was developed. Chapter 1

contains introductory information, including a review of relevant related work. Chap-

ter 2 contains the derivation of two forms of a visual-cue-usage model. Chapters 3

and 4 describe two experiments that were conducted to identify and validate the

most appropriate model. Chapter 5 describes an experiment in which the perspective

display was compared with more conventional displays. Chapter 6 contains discus-

sion of the results of the experiments, and some of the implications of these results.

Chapter 7 contains conclusions from this research, a summary of the fundamental

contributions it has made, and recommendations for future work.

1.1 Background

The work described in this dissertation, as well as the prior art, has relied heavily on

two different disciplines. The first discipline is Psychophysics, which is the study of

the mapping between physical stimuli and the psychological response to those stimuli.

The second discipline is Manual Control, which is the study of human behavior when

controlling a system that requires constant control inputs. Psychophysics is relevant

because it has generated much understanding as well as mathematical models of per-

spective scene perception. Manual control is relevant because it provides a framework

for analyzing the behavior of the human operator in performing a manual control task,

given the information gleaned through visual perception of the perspective scene.

In the following sections, both Psychophysics and Manual Control will be dis-

cussed, and particularly relevant portions of each topic will be reviewed in detail.

Then previous work that is considered relevant prior art will be discussed sepa-

rately. The work that falls into this category has two distinct qualities; modeling

of perspective-scene perception, and modeling of manual control based on the scene

perception.

This chapter does not feature an extensive or inclusive review of displays, manual

2



control, or visual perception;for the most part, only the most directly relevant infor-

mation from thesetopics is presented.Severalsourcesarerecommendedif the reader

wishesto obtain more extensiveinformation. [1] contains an overviewof researchon

the effectsof control dynamicsand display types on performance. [2] is a surveyof

researchrelated to modelingof control behavior with various types of displays. [3]

contains a summary of manual control modelsbeyond the two modelsreviewedin

this dissertation; [4] summarizeshuman supervisorycontrol models. [5] containsan

introductory overviewof visual perception, while [6] is probably the best sourceof

information onecologicalpsychophysicsrelatedto self-motionperception andcontrol.

1.1.1 Ecological Psychophysics

Psychophysics as a discipline dates back more than 100 years. ,lust as engineering

has evolved into several areas of specialization, psychophysics also has particular

disciplines within it. Specifically, the work described in this thesis relies on the field

of Visual Psychophysics, which is simply the study of the effect of light (the physical

stimuli) on visual perception (the psychological response).

Several approaches to understanding and modeling visual perception have been

advanced within the field of visual psychophysics. One such approach, often termed

the "Information Processing" approach, encompasses empirical studies on the sen-

sitivity of animals and humans to constrained stimuli, models to describe observed

responses, and neurological studies to determine what functions the brain performs

in visual perception. This approach has great relevance to a range of problems (such

as image processing), but does little to describe how humans and animals draw upon

this visual perception to perceive more about the complex world around them.

At the beginning of World War II, there was an intense interest in reducing the

rate at which aviator candidates were washed out of the program. James J. Gibson,

a perceptual psychologist drafted to serve in the war, was tasked with developing

perceptual tests to administer to aviator candidates. The focus of Gibson's research

effort quickly turned to depth and distance perception, which many believed to be

critical to the landing task. However, none of the tests devised to measure these



perceptual capabilities proved to be successfulin predicting a prospectivepilot's ca-

pabilities. Work that Gibson performed in this area [7], coupled with researchhe

had performed beforeand after the war, eventually leadto the developmentof a new

theory of psychophysicswhich would becomeknown as Ecological Psychophysics.

Gibson advanceda set of hypotheses[8], which he called the " 'Ground Theory' of

SpacePerception". Hedescribed it as "the possibility that there is literally no such

thing as a perception of spacewithout the perception of a continuous background

surface". The five initial hypothesesof this theory are presentedbelow:

1. The elementary impressionsof a visual world are those of surfaceand edge.

2. There is always some variable in stimulation (however difficult it may be to

discover and isolate) which corresponds to a property of the spatial world.

3. The stinmlus-variable within the retinal image to which a property of visual

space corresponds need be only a correlate of that property, not a copy of it.

4. The inhomogeneities of the retinal image can be analyzed by the methods of

number theory and modern geometry into a set of variables analogous to the

variables of physical energy.

5. The problem of how we perceive the visual world can be divided into two prob-

lems to be considered separately: first, the perception of the substantial or

spatial world, and, second, the perception of the world of useful and significant

things to which we ordinarily attend.

This approach for understanding visual perception was quite different from the

information processing approach taken by his predecessors. Most of the previous

work had been done without taking the context of the perception into account; Gib-

son's approach made consideration of context an essential element in understanding

perception. One central concept of this theory, best exemplified in hypotheses 2 and

3 above, is that we can find characteristics in the stimulation that correlate with

some desired property of the spatial world. This concept was carried further by one

of Gibson's students, Rik Warren. Warren developed a detailed mathematical de-

scription of the optical transformations occurring in rectilinear motion [9, 10]. Other



researchers (including Gibson) had developed expressions for optical invariants for

various particular cases (such as constant-altitude flight); Warren's contribution was

to formalize a more general description of the optical transformations for the purpose

of determining potential optical invariants.

Much of the work done in ecological psychophysics has addressed human locomo-

tion, both natural (e.g., walking, running) and vehicle-based. All excellent review of

the relevant work related to lmman locomotion up to 1990 call be fonnd in [6]. How-

ever, some researchers have focussed primarily on the optical information available

for the more complex task 1 of flying an aircraft. One task that has received a great

deal of attention is the approach to landing, particularly the problems of glidepath

control and touchdown-point estimation. Gibson addressed this task in both his work

for the Army and later work [11, 12]. Calvert was another researcher, working for

the Royal Aircraft Establishment, who studied the approach-to-landing task [13, 14].

Both Gibson and Calvert approached this task from the standpoint of visual-cue iden-

tification (i.e. identifying patterns in the visual scene that would allow estimation of

relevant parameters such as touchdown aimpoint).

Havron combined the optical iMomlation available ill the landing scene with mea-

surements of visual perceptual thresholds. In the summary of [15], he succinctly

describes his approach:

Fornmlae are presented which describe the apparent speeds of movement

of ground objects during final approach. Next, human factors data are

brought together to estimate perceptual thresholds for movement. Speeds

of movement expressed as iso-velocity curves are then compared with per-

ceptual thresholds of motion to evaluate tile effectiveness of guidance that

tile apparent expansion pattern of earth can provide for touchdown point,

heading and flare-out.

Naish [16] used a very similar approach to exmnine the geometrical properties of

the runway outline projected onto the forward view. He developed predictions of the

saliency of a mnnber of visual cues based upon human perceptual thresholds. The

l Presumably more complex than walking or running



tasks he considered were related to lateral and vertical path positioning. Others have

used more complex human perceptual models to examine the approach-to-landing

task. Perrone applied models of slant misperception [17, 18] to the "black-hole"

landing [19, 20]. This situation can occur at night when only the runway outline is

illuminated. Galanis [21] developed a perceptual model for glideslope estimation in

an impoverished scene, using a weighted average of the geometrical relations within

the scene.

Another aviation-related task that has received much attention within the psy-

chophysics community is altitude control. The literature in this area is quite exten-

sive, and a thorough review is beyond the scope of this dissertation. Much of the

relevant work in this area has been summarized in [6]. Owen [22], Johnson [23, 24],

and Flach [25] have done empirical work based upon the functional optical invariant

analysis techniques developed by Warren. While much of the prior work related to

judgment of altitude has relied upon passive judgments, Johnson and Flach have fo-

cused more on the active-control paradigm. The basic experimental approach used

by these researchers has been to 1) develop a candidate set of optical invariants to be

evaluated, 2) design test stimuli with combinations of these optical invariants present,

and 3) correlate the observed performance with the invariants. This approach has

typically not included any modeling of the human operator's control behavior, with

one exception. Johnson and Phatak used the results of one of these experiInents [24]

to demonstrate the efficacy of a combined manual control/perception model [26]; this

is discussed further in Section 1.1.3.

Other researchers have expanded these methodologies further, applying optimal

estimation theory to describe perspective scene viewing. This approach has been

used to incorporate the effects of both perceptual thresholds and attention sharing.

Since the researchers who have developed this approach have also considered closed-

loop manual control, this work will be further discussed with the other prior art in

section 1.1.3.



1.1.2 Human Operator Models

Human operator modeling started with _lstin in tile late 1940's. In developing sys-

tems to aid gunners performing target tracking, Tustin discovered that the control

behavior of the human could in many cases be modeled with simple linear servomecha-

nisms [27]. Several models have since been developed to describe the strategy a human

operator adopts in a closed-loop manual control task (a summary of human operator

modeling for manual control tasks can be found in [3]). Two of these models will be

briefly described.

Crossover Model

McRuer and several colleagues developed what they called tile Crossover Model (CM)

over a period of approximately 20 years: [28] contains a comprehensive summary.

McRuer conducted extensive experiments with human operators controlling plants

with varying dynamics, forcing flmctions, and differing levels of system complexity.

The goal of this work was to understand and model the compensation that hmnans

adopt in manual control tasks.

Conceptually, McRuer represented the human operator in a manual control svstem

with components that were related to known processes and svstems (Figure 1.1(a)).

This conceptual model accounts for sensory processes (perception), equalization (con-

trol strategy), and the dynamics of the limb manipulating the controller. While useful

for visualizing the hunmn as a control element, this idealization is not particularly

useful for measurement and model identification. The processes shown are known

to be, in some situations, highly nonlinear, and the inner-loop states are, at best,

difficult to measure.

The approach adopted by McRuer was to represent the output of the human

operator with two components: 1) tile coml)onent of the response that is linearly

correlated with the forcing function, and 2) the remainder, termed the renmant.

Figure 1.1 (b) shows an equivalent block diagram of Figure 1.1 (a), in which the output

of the human operator is represented with these two components. The dynamics of the

display (if any) are included with the controlled element dynamics as a single, linear,
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Figure 1.1: Two depictions of the human operator performing a compensatory task.

The figure on the left (a) depicts an idealized block diagram of the system. The

figure on the right (b) depicts an equivalent block diagram of the system, useful for

measurement and identification.



constant coefficient element Y_. The dynamic element Yv is used to represent the linear

compensation the human operator adopts. Factors that have been demonstrated to

appreciably affect Yp are the controlled elenmnt Yc, the forcing function characteristics,

and the frequency of the input.

McRuer found that the characteristics of Yv tended to vary systematically as a

function of these factors. He advanced a model for Yv, that consists of two elements:

1. A general parameterized linear model form (a function of frequency, jaa), and

2. A series of adjustment rules to set the model t)arameters for the particular

situation

These adjustment rules account for the controlled element Y_. and the forcing func-

tion 2.

The first (and simplest) linear model form that was advanced from this effort

specified that the hmnan operator tended to adjust his or her compensation (Yp),

such that, in the input-frequency region of crossover (loop gain = 1), the combined

open-loop transfer flmctions of the operator and controlled element (Y,,:) had the form:

Cdce- r s

Yp(s)Y,:(s) - (1.1)
s

Equation 1.1 is the essence of the Crossover Model.

The crossover frequency co_ is defined as the frequency at which the magnitude

of the combined human operator and controlled element dynamics are equal to one;

that is:

IYp(jco_)Y_(j_o_)l = 1 (1.2)

The parameter r in Equation 1.1 represents the human time delay, which is the

lumped contribution of perceptual delays, neuromotor delays, and any other higher

frequency lags. The adjustment rules for the selection of parameters will not be

discussed here, but are available in [28].

2yp can also be time-varying, due to factors such as training (i.e. the process of skill acquisition

constantly changes Yp) and fatigue. These effects of these factors can (fortunately) typically be

controlled through operator selection and training. The manipulator dynanfics have been shown in

most cases to cause second-order effects, and are typically not accounted for.



Further experimentation by McRuer and others yielded a more complex model

form, called the Precision Model:

zp(s)= K e-'s\p-7+ : (rN, 
+ 1)((_ )2+ _N + 1)

(1.3)

The terms TL and Tj represent the basic lead and lag equalization capabilities the hu-

man provides. The terms TK and T_c represent a low-frequency lag-lead equalization

that is sometimes observed called the low-frequency "phase droop". This typically

appears when the forcing-function bandwidth increases. The terms TN1, coN, and (N

represent the neuromuscular dynamics. Kp represents the gain the operator adopts,

and r is a lumped time delay representing pure time delays in both the perceptual

and neuromuscular systems. The Precision Model was developed specifically to al-

low precise fitting of data in frequency ranges well above and below the crossover

frequency.

Although Equation 1.1 was termed the Crossover Model when it was first pub-

lished, the term Crossover Model has become synonymous with the spectrum of mod-

els developed by McRuer and his colleagues. A modified Crossover Model as well as

a form of the Precision Model are used in the analysis described in this dissertation.

Optimal Control Model

Another model that has been developed to model human compensation in closed-loop

control is the Optimal Control Model (OCM). It had been noted by most researchers

in human operator modeling that the compensation the human adopts is similar to

the compensation that an experienced designer would put into an inanimate compen-

sator element. Kleinman, Baron and Levison [29] used optimal-control techniques to

develop a model of human compensation in manual control situations. One element

of the model that sets it apart from the Crossover Model is the assumption that

the human acts as an optimal estimator, reconstructing the system state from the

observations.

Both types of model can achieve the same results: The dynamics represented in

the precision model can usually be duplicated with the OCM with proper selection

10



of weighting matrices, noisecovariances,and time delays. The choiceof model to

use often depends upon the desired result. The CrossoverModel is better suited

for parameter identification, but requiresspecifying the model structure explicitly.

The OCM is more easily adapted to representcomplexsystems,and is particularly

well suited to studying the effectsof adjusting systemcharacteristics. Both of these

modelingapproacheshave beenusedto study manual control with perspectivescene

viewing; this work will be reviewedin the next section.

1.1.3 Prior Art

This subsectionwill discussprior work that has tile most direct relevanceto the

work describedin the dissertation. The defining featuresof the work included ill this

section are 1) modeling of perceptiona of a perspectivescene,and 2) modeling of

closed-loopmanual control using tile perspectivesceneperception (asopposedto the

explicit display of measuredstates). A commonelementof all of the work described

in this section is to directly account for perspectivesceneviewing by modeling the

perspectiveprojection of the world into all image (or natural viewing).

The approach necessaryto incorporate perceptual sceneviewing with manual

control waswell understoodby the developersof the manualcontrol models.In 1974,

McRuer demonstrated an understanding of this approach for modeling of manual

control using visual scenes[30]:

"The inputs sensedfor VFR conditions are currently estimated on the

basisof control needs (i.e., what feedback paths are necessary or desirable

for the closed-loop system). The actual quantities perceived are likely to

be linear combinations of these, with the weightings between the inputs

fixed by the geometry and perspective rather than being independently

adjustable by the pilot. These aspects of perception can have profound

effects on the closed-loop analysis of various maneuvers (e.g., approach,

landing, dive bombing, etc.)."

aIn this context, perception is defined as the process by which a human operator obtains infor-
mation, for the purpose of performing closed-loop manual control.
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Baron [31] also suggestedan approachto account for viewing of a perspective

scenein closed-loop-controlmodeling with the human. The approachwas to usethe

perspectivetransformations to identify the linearized componentsof eachvisual cue

to construct the measurementmatrix. Visual perception thresholds,whereappropri-

ate, were suggestedto provide the observation noisecovarianceparameters. These
measurementswere then combinedwith human OCMs.

The first part of the following section reviewswork in which the OCM has been

used,assuggestedby Baron, to model closed-loopmanual control with natural scene

viewing. The secondpart reviews work in which the Crossover Model is applied to

model closed-loop manual control. The fundamental difference in these approaches

is the philosophy of how the human applies the information: do humans do a recon-

struction of the system state (including vehicle dynamics and disturbances), then use

the reconstructed state to formulate a feedback solution? Or do humans find cues

in the visual scene that correspond to the desired state, and use this cue directly in

the feedback solution? The second view is the hypothesis embraced in this disserta-

tion. As will be seen, relatively little work based on this second approach has been

done previously. However, the work done with the OCM is highly relevant, since the

process of constructing a "measurement" from the image or scene is quite similar in

both approaches.

Optimal Control Model

Although the OCM for a human was developed after the Crossover Model was, it

was the first model to be combined with perspective scene viewing. Grunwald and

Merhav [32, aa]developed an optimal controller and estimator model of lateral con-

trol of a remotely piloted vehicle (RPV) using visual field cues. This model was

validated and modified with the results from an experimental evaluation, and could

generally be adjusted to provide good correspondence with the experimental data.

Grunwald and other colleagues have conducted a series of design and evaluation ef-

forts of combined perspective scenes and display symbology. In much of this work,

Grunwald determines what essential control elements are present in the unaugmented

perspective scene, and determines ways to improve closed-loop control either through
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adding perspectivesceneelements(suchastunnel-in-the-sky displays),or presenting

state information not available ill the scene(suchasaccelerations)through predictor

or other symbology.Grunwald and Merhav [34,35] consideredaugmentationsto the

visual field cuesfor lateral control of an RPV. The tunnel-in-the-sky4 display con-

cept has beenexamined for helicopter approaches[39,40], and aircraft approaches

[41, 42, 43]. Negrin and Grunwald [44] developeda perspectivecueingstructure to

aid helicopters performing shipboard landings using visual cue analysis. Grunwald

and Kohn alsoinvestigatedthe role of different cueingelementsin low-altitude visual

flight [45, 46].

Wewerinkealso applied optimal control modeling to examine the utility of a set

of simplified visual cues for use in the approach-to-landingtask [47, 48]. He later

extendedthis analysisto the developmentof HUD symbologyto augment the infor-

mation availablein the visual scenefor both good and poor visibility conditions [49].

Both of theseefforts included experimentalvalidation of the model. Wewerinkeused

measuredperceptualthresholdsof particular visual cuesto make a pT",ovz predictions

of the observation noise covariance.

Baron, Lancroft, and Zacharias [50] developed an extensive OCM of the pilot in a

simulator (which featured both a motion system and computer-generated visual im-

ages). The visual-scene-perception model accounted for several nonlinear processes:

visual resolution, visual discrinfination, qnantization in the display (due to rasteri-

zation), and limitations to the field of view (FOV). Zacharias later extended several

of the concepts introduced in this work into two different models of human visual

scene perception. The first model, known as LINMOD, was used to describe visual

perception of line segments [51]. The model was based upon the assumption that

the operator could observe four aspects of a line segment; length, orientation, and

2-D location of the midpoint. The second model, TEXMOD, modeled perception of

a visual flowfield, as is thought to be perceived when the operator is translating or

rotating relative to the world [52, 53]. He later applied both of these models with

4While Grunwald was the first researcher to combine models of perspective scene viewing of
tmmels with manual control models, numerous other researchers have exanfined the tunnel-in-the-

skv concept. It was first studied by Wilckens [36]. Recent research efforts have included in-flight

delnonstration and evaluation by at least two research teams [37, 38].
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OCMs to the altitude control task in low-level high-speed forward flight [54, 55]. An

informative review of Zacharias' optimal-control modeling approach and experimental

results can be found in [56].

Crossover Model

The first perceptual scene modeling combined with the Crossover Model was done by

Johnson and Phatak [26]. They conducted an experiment in which altitude control

with various types of ground textures was examined [24]. For one particular subject

and ground texture, they showed that the operator's strategy could be closely modeled

with a visual-cue model. This technique has the greatest similarity to the work

described herein. The similarities include the use of sum-of-sines input signals for

operator transfer function identification, linearization of perspective transformations

for linearized visual-cue analysis, and preliminary identification of a visual cue based

upon the transfer functions. In this dissertation, the experimental approach outlined

by Johnson and Phatak is extended to identify multiple visual cues, with a much

larger pool of operators and a larger number of visual scenes.

Mulder [57] has also combined Crossover Models with perspective scene viewing

models. Mulder has studied the performance of subjects with various tunnel-in-the-

sky symbologies, making a priom predictions on which tunnel display features would

be susceptible to interference effects from combined lateral and longitudinal control

tasks. Mulder used the Crossover Model to determine if any systematic changes in

the pilot transfer function model parameters such as crossover frequency and phase

margin occurred as a result of changing display conditions. This work did not include

any identification of visual cues, or explicit modeling of visual-cue usage.

1.2 Objectives and Approach

There were three main objectives that motivated the work contained in this disserta-

tion. They were:
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• To develop a simple new model to characterize accurately manual control with

perspective scene viewing.

• Validate tile model with a variety of operators and conditions.

• Identify potential visual-cue combinations through application of tile model to

experimental data.

In this dissertation, a model that accounts for perspective scene viewing in a

manual control task is developed. The model is termed the Visual Cue Control

(VCC) model; it combines the previously described Crossover Model with a model of

perspective scene viewing and visual cue selection. Two different forms of this model

are developed and tested. One model form. termed the one-cue model, is based upon

the assmnption that tile operator obtains both position and velocity from one visual

cue on the perspective display. The other model, termed the two-cue model, is based

upon the assumption that the operator uses one visual cue for position, and another

for velocity. Both models incorporate the Crossover Model, and are partially described

by the parameters in this model. The models can be differentiated from each other

by an additional function which accounts for the perspective scene viewing. This

flmction is characterized in the one-cue model by tile specification of one additional

parameter (called A'_); tile two-cue model features two additional parameters (called

A'_ and K_).

The models are validated and coinpared by 1) experimentally measuring tile trans-

fer functions describing the human operator input/output characteristics, 2) fitting

parameters of each model to the measurements. The resulting models are evaluated

ill two ways. First, the ability of each model form to fit the measurements is assessed.

Then, the consistency of the identified parameters with the adjustment rules of tile

Crossover Model, and tile expected values of the parameters from the perspective-

scene characteristics, is assessed. In many cases, it will be shown that tile identified

parameters correspond to the values expected for particular visual cues.

The validation approach taken is quite siinilar to that described by Johnson and

Phatak [26]. The present work departs from the previous work ill two primary areas.

First, the previous work applied to one operator in one condition. One objective
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of the current work is to apply the model to a number of operators and a range of

conditions. Second, the previous work identified only one cue being used; the present

work expands the model to include two visual cues. It will be shown that the two-cue

model is required to describe most of the experimental conditions.

1.3 Contributions

The unique contributions made with this work include:

• Development of a simple model which for the first time accurately characterizes

human manual control through perspective scene viewing using a combination

of cues, not just a single cue.

• Development of more-comprehensive knowledge through a more complete data

set, with more statistical power, than the prior art.

• First detailed understanding through examination of visual cues, of the longi-

tudinal position-control task using a perspective scene.

• An improved understanding of the differences and similarities between perspec-

tive and compensatory displays.

• Development of simplified parameter-identification procedures.

• Demonstration of a methodology to identify visual cues used in a manual control

task.
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Chapter 2

The Visual Cue Control Model

The purpose of the work described in this dissertation is to provide a better un-

derstanding of this process by which we use perspective scenes for manual control.

Specifically, the goal is to model the input/ontput characteristics of the operator per-

forming a manual-control task while viewing a perspective scene. This model, termed

the Visual Cue Control (VCC) model, is based upon the hypothesis that the human

operator finds visual cues that correspond to the desired state, and uses the cues

in place of explicit state information (which is not available) to formulate a control

strategy. The model of the process is created by combining the Crossover Model with

a model of perspective-scene viewing and visual-cue selection.

Before proceeding into the model development, it is worthwhile focusing attention

on a particularly important concept. The term "visual cue" is used extensively in

this dissertation. A visual cue is, in essence, any definable feature or charactemst,c

of the vzsual scene. Student pilots learn to use the position and orientation of the

"line" made by the outside horizon, relative to the windscreen of the aircraft. The

orientation of the line correlates with roll attitude, and the height of the horizon line in

the windscreen correlates with pitch attitude. Likewise, the displacement of a distant

feature relative to the centerline of the windscreen correlates with the heading. The

horizon-line attitude references, and heading reference, are examples of visual cues

useful for attitude determination.

Other cues can aid position determination. Consider the case of a hover. A feature
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located in front of the operator would have a nominal position in the image. If the

operator moved forward, the feature would move down in the image; if the operator

moved back, the feature would move up. While the position of this feature in the

image is certainly correlated with the horizontal position of the operator, changes in

other vehicle states can also cause the feature to move in the image; specifically, the

vertical position of the feature would be affected by both altitude and pitch in addition

to horizontal position. Thus, in order to visually control longitudinal position using

the feature as a reference, the operator needs to isolate the effects of the various

degrees of freedom on the displacement of the feature in the image. This is obviously

a task that can be accomplished; the goal of the present work is to provide a better

understanding of how this is done.

As will be seen, this chapter contains the development of a model that is based

upon the assumption that a separate visual cue is being used to detect motion. This

concept defies easy description, but it can be likened to the use of peripheral vision

to detect motion in some portion of the image. That is, the operator likely fixates on

some feature of the image to provide a visual cue for good positional guidance, then

uses motion of the entire image, or in a particular part of the image viewed in the

periphery, as another visual cue.

These simple, qualitative descriptions will later be distilled into a set of very sim-

ple, quantitative models. These models will in no way capture the complexity or

richness of the human perceptual process, but rather isolate the minimal elements

necessary to describe the elements of the human operator being modelled (the in-

put/output characteristics).

The modeling approach adopted is to modify the Crossover Model to directly ac-

count for the effects of perspective scene viewing. Figure 2.1(a) 1 depicts an operator

performing a disturbance rejection task using a compensatory 2 display; Figure 2.1(b)

IThe system depicted in Figure 2.1(a) is lnathematically equivalent in form to Figure 1.1(a).
The system shown in Figure 2.1(a) can be made equivalent to Figure 1.1(a) by 1) transforming the
forcing function through the negative inverse of the controlled element, and 2) using it to replace
the commanded state in Figure 1.1(a). This new representation is developed to correspond with the
perspective-display-viewing condition.

2The term compensatory display is used even though there is no eonmlanded input; in this ease,

the commanded input is zero, and the forcing function is being injected instead as a disturbance to
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depicts tile same task with a perspective display. With the compensatory display,

the operator is viewing only direct measurements of the system output (i.e., con-

trolled state). The perspective display, on tile other hand, will generally be affected

by all of the vehicle states, potentially even ones that are not being directly con-

trolled. This is depicted in the figure with the injection of all additional disturbance

as an uncontrolled state. Mathematically, the case of perspective-display viewing is

fundamentally different in two ways: 1) the perspective display is affected by both

controlled and uncontrolled states, and 2) the perspective display performs a nonlin-

ear transformation on these states. The transformation typically couples the states

to such an extent that there are rarely characteristics of the perspective scene that

exhibit a one-to-one correspondence with a particular state.

Two different perspective-based model forms will be developed and tested in this

dissertation. One model form, termed the one-cue model, will be based upon the

assumption that tile operator obtains both position and velocity from one visual cue

on the perspective display. The other model form, termed the two-cue model, will be

based upon the assumption that the operator uses one visual cue for position, and

another for velocity. The one-cue and two-cue models take the form of parameter-

ized transfer flmctions. Both model forms incorporate the Crossover Model, and are

partially specified by the parameters of the Crossover model. The models differ from

each other through an additional function, which is an outcome of the perspective

display and visual-cue selection process: The one-cue model is specified by one addi-

tional parameter, and the two-cue model is specified by two additional parameters.

These parameters are directly related to the visual cues.

Determination of which (if either) model form is accurate must be done experi-

mentally. This experimental validation is done by fitting parameters of both models

to measurements of the input/output characteristics of the human operator. As the

models are based upon the Crossover model, one would expect the input/output

characteristics to be sensitive to the same factors that have been shown to affect

the Crossover Model parameters. Additionally, the human-operator characteristics

should be sensitive to changes in the visual cue selected, and to characteristics of

the controlled element.
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a compensatory display. The figure on the right (b) depicts the operator presented

with a perspective display. The two forcing functions represent independent wind-gust

disturbances.
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the perspective display. Figure 2.2(a) shows the conceptual diagram of the VCC

model, alongside an equivalent block diagram (Figure 2.2(b)) which illustrates the

input/output function dependencies.

This chapter contains the development of the models and tools necessary to specify

and validate the VCC model. Section 2.1 contains a description of the task that was

used for model development and experimentation. Section 2.2 contains the derivation

of a linearized model that accounts for the perspective display and visual-cue selection.

In Section 2.3, this model is combined with the Crossover Model to create two different

VCC model forms, the one-cue model and the two-cue model. Section 2.4 describes

the measurement techniques used for experimental validation of the model forms.

Section 2.5 contains an analysis of what parameter values are expected for a small

subset of visual cues.

2.1 Task

The task considered here is an idealized hover of a helicopter-like vehicle, say, in

the presence of disturbances (in Figure 1.1(a) or 1.1(b) this means commanding the

output to be zero). The only degrees of freedom allowed were longitudinal motion

and pitch; all other degrees of freedom were assumed held constant by other controls.

The transfer functions representing the vehicle dynamics are taken to be:

1
x(s) - [5(5) +u(s)] (2.1)

s(5 + 0.2)
1

0(5) = -q(s) (2.2)
s

($is the joystick displacement, x is the longitudinal position in eyeheights a, and 0 is the

pitch attitude in radians. In this task, 0 and x were taken to be independent of each

other, u is a disturbance to the longitudinal acceleration in units of eyeheights/sec _,

and q is a disturbance in pitch rate in units of rad/sec.

Operators were instructed that the vehicle they were controlling was not any real

vehicle; the vehicle moved forward when the joystick moved forward, and aft when

3For a constant-altitude task. it is convenient to scale distances relative to the altitude, or height,

of the eyepoint of the operator. This is discussed in more detail in Section 2.2.
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the joystick moved aft. They were told that there would be longitudinal wind gusts

as well as pitch disturbances, but the pitch did NOT affect the fore-aft motion, and

they were NOT controlling pitch. Pitch and longitudinal motion were decoupled to

facilitate visual-cue identification. The disturbances q(s) in pitch rate and u(s) in

longitudinal acceleration (e.g., from the wind gusts) were each made up of a sum

of 12 sines, with unique frequencies for each disturbance, to facilitate measurement

of the operator response relative to the two degrees of freedom. Specific details of

the disturbance spectrums, as well as the discrete transfer functions used to simulate

the dynamics for Experiments 1 and 2, are contained in Sections D.1 and E.1 of

Appendices D and E, respectively.

2.2 Perspective Visual Cue Selection Model

This section contains the development of a model to characterize the process of

perspective-display viewing and visual-cue selection. This is done by defining a visual

cue to be some characteristic of the perspective scene, and then determining the trans-

formation between the relevant perspective-scene characteristics and the controlled

and uncontrolled states, through the process of perspective projection.

The perspective projection process can occur through 1) natural viewing of a

scene. 2) camera imaging, or 3) computer-generated imagery. It is the process by

which the 3-D coordinates of world features are transfl_rmed into 2-D image coordi-

nates [58]. These image coordinates can be on a display, as in the case of a camera

image or computer-generated imagery, or with the proper projection parameters, on

the human's retina. The current analysis will include only the case of Computer Gen-

erated Imagery (CGI). This implies that the surface onto which the image is projected

is assumed to be flat (as in camera imagery or CGI) as opposed to curved (as with

the retina).

The factors that affect the perspective projection are: 1) the locations of scene

features, and 2) the location and orientation of the imaging device, and 3) the imaging

device characteristics. The imaging device characteristics can include field of view

and/or focal length, and are typically constant for a particular situation. The scene
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featuresdescriptions are typically available relative to a fixed, or world, coordinate

system. Another coordinate systemfixed in the vehiclebeing controlled is useful to

describethe motion of the vehicle(in which the camerais located) relativeto this fixed

coordinatesystem. Onecoordinatesystemdescriptionwhich hasbeenwidely adopted

in the field of aeronautical engineeringis describedby the Eulerian Angles [59].

In Appendix A, the generaltransformationsbetweenthe positionof scenefeatures

in world coordinates,position and orientation of the operator relative to the world

coordinates,and the position of the feature in the imagearederived. Theserelatively

complexrelationships, containedin EquationsA.4 through A.6, areof coursegreatly

simplified by taking into accountthe constraintsof the task under consideration. This

(purely geometrical)situation is representedin Figure 2.3. With thesesimplifications,

the relationship defining the image-planecoordinatesof a particular scenefeature
become:

FDy

Y' = ((Dx-X)cO-sO) (2.3)

F((Z)x - X)sO + cO) (2.4)
z, = - ((Dx - X)cO-sO)

in which F is the focal length, X is the longitudinal position of the operator, Dx and

Dz are the longitudinal and lateral locations, respectively, of a scene feature. The

expressions sO and c@ denote the sine and cosine of O, respectively. For this task,

the only degrees of freedom are longitudinal position and pitch attitude. Altitude is

held constant, and the distances X, Dx and Dy can be scaled in units of eyeheights,

making Dz = 1.

A visual cue is defined to be some function of the image-plane coordinates, which

are in turn functions of the operator state and scene features. The visual cue A is

represented as follows:

A = Gimage(g,, z,) = Gworld(X, O, Dx, Dy, F) (2.5)

Gimage(O) represents an arbitrary function of the image-plane coordinates (9,, z,).

Gworld(. ) represents the same function but expressed in terms of the "world" char-

acteristics, specifically the position and orientation of the operator (X, @), position

24



Figure 2.3: Perspectiveprojection diagram for simplified hover task. The imaging
devicehas a focal length F. The operator is located at a position X. with a pitch

attitude 0. The location of a particular feature being imaged is Dx, Dy. The

position of the feature in the image is denoted with y,, z,. All distances (X, Dx,

Dy) are scaled in units of eyeheights (the height of the eye above the groundplane).

Equations 2.3 and 2.4 describe the relationship between the observer state (X, @),

feature location (Dx, Dy), focal length (F), and location of the feature in the zmage

(y,.
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of the scenefeature (Dx, Dr), and focal length (F). It is obtained by substituting

Equations 2.3 and 2.4 into Gimage(Y,, z,). The parameters Dx, Dr, and F are fixed

for a particular feature and imaging geometry; the only variables are X and O.

The transformation between these variables, X and (9, and the image-plane coor-

dinates, !/, and z,, is nonlinear, as can be seen by examining Equations 2.3 and 2.4.

A linear relationship is desired for incorporation with the Crossover Model, since it is

the linear input/output relationships of the human operator that are being modelled.

A linearzzed visual cue A, based on the visual-cue description A, is defined as:

dA x=0,e=0A - OA/OX

where

(2.6)

(2.7)

In this definition, the differential of A is normalized with cgA/cgX to create one-to-

one correspondence between the linearized cue A and the longitudinal position. This

was done to simplify incorporation into the Crossover Model. With this scaling, and

substituting z = dX and 0 : dO, Equation 2.6 becomes:

where

A = z + KaO (2.8)

cgA/00 x=o,e=o (2.9)Kx- OA/OX

This linearized visual cue A is simply a linear combination of the states z and 0.

The variable Ka specifies the relative contributions of 0 and z to the displacement of

A, and is determined by the function defining the cue, A.

This concept can be more easily understood by applying this derivation to an

example. Figure 2.4 contains a diagram of a perspective scene, with an example visual

cue A illustrated. In words, this cue is the vertical location, in image coordinates,

of the dashed line on the image. This line, in world coordinates, is taken to be at a

constant longitudinal position Dx.

In equation form, it can be expressed as:

F((Ds - X)sO + cO)
A -- "f_t --

((Dx - X)cO - sO)
(2.10)
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Figure 2.4: Visual cue used for example analysis. The cue consists of the vertical

position of the feature (the line in the foreground) relative to the fixed image frame.

For this example cue that we have defined, we can calculate Ka by: 1) taking the

partial derivative of A, defined in Equation 2.10, with respect to X and O, 2) evalu-

ating those derivatives at the linearization conditions, and 3) substituting them into

Equation 2.9. The intermediate steps are not shown; the final result for this example

cue is:

It'a = 1 + DI. (2.11)

Expressions for I£a for specific visual cues will be derived in Section 2.5.

The purpose of the preceding derivation was to develop a linearized model of a

visual cue (_), to be used as an input to an operator model. In the next section,

one or more linearized visual cue models will be combined with the Crossover Model

to provide models of manual control which account directly for perspective-scene

viewing.

2.3 Visual Cue Control Model

This model is based on the hypothesis that the human operator finds visual cues that

correspond to the desired state, and uses the cues in place of explicit state information

(which is not available) to fornmlate a control strategy. Two forms of the model will
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be developed; one in which one visual cue is used, and another in which two cues are

used.

There is substantial psychophysical evidence that the truman visual system has

specialized structures to process motion in the visual stimulus [60]. Studies dating

back more than 100 years have determined that the perception of motion is not just

the perception of change of position over an interval of time, but appears to be highly

specialized (and, fortunately, easily fooled, or we would not perceive television or

movies as we do). The ability to sense static features (position) separately from

moving features (motion) is assumed in the model.

In the model, the operator acts on information from both sensing systems. Two

different forms of model are considered; one in which both the position and motion

sensing system processes information from the same stimulus, and another in which

the position and motion sensing system concurrently processes information from two

different stimuli. The two model forms, and the expected transfer functions, are

developed in the Sections 2.3.2 and 2.3.3.

While it is not possible to establish and define precisely what cues an operator

is using, it can be determined, as a function of scene texture - as we shall see from

experiments - how many cues are being used, and what texture features enable what

level of control performance.

2.3.1 Crossover Model Predictions

Before considering the human operator response using a visual cue, it is worthwhile

to review what the Crossover Model would predict for the human operator being

presented with explicit state measurements4; refer to Figure 2.5. The controlled-

element dynamics were defined in Equation 2.1. Specifically, Y_(s) = 1/s(s + 0.2).

The Crossover Model predicts that the product of the controlled-element dynamics

4The VCC model described herein is based upon a manual control model for a compensatory

task; this implies that only the error between the commanded and actual state is presented to the
operator. It can be applied to this task when the "'commanded" state is zero (or constant). The case
in which some explicit or implicit dynamic commanded state is present would require application
of pursuit models of manual control. This case would lead to the incorporation of a feed-forward
element of the commanded state in the control strategy.
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Figure 2.5: Block diagram of Crossover Model for current task, assuming explicit

s_ate measurement is available. Note that there is no "commanded" state a'c. For the

disturbance rejection task considered here, the :_command" is to remain stationary,

or Zc = O.

and human-operator compensation will be approximately:

Yp(s)Yc(s) = _ce-'-s (2.12)
8

in the flequency region of crossover. The crossover frequency coc is the frequency

at which the open-loop transfer function Yp(s)Yc(s) has a magnitude of one (Equa-

tion 1.2). It can be seen from inspection thai: when s = jw_, the magnitude of

Y_,(s)Y_(s) in Equation 2.12 becomes unity. Accounting for the fact that the human

can probably not generate 5 seconds of lead compensation [1], one would expect 1;he

operator dynamics to take the approximate form:

Yp(s) = C°Ce-r*(s + COL) (2.13)
COL

where COL should occur at a frequency below crossover, and at or above 0.2 rad/sec

(0.2 < COl<

Figure 2.5 shows a schematic diagrmn of this assumed compensation strategy. The

transfer function between the control and the state would be:

= + (2.14)
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Figure 2.6: Block diagram of one-cue model for current task. The explicit state mea-

surement shown in Figure 2.5 has been replaced with a visual cue, ct. The visual cue

the operator will in fact see in his view is represented as a stun of the state x and

the pitch attitude 0 nmltiplied by the factor K_. K_ represents the relative contri-

butions of 0 and x to this particular cue; it is governed by the process of perspective

projection. As in the case of explicit state measurement previously considered, the

commanded visual-cue state is zero (i.e., "don't move").

Note that the term r(s) is included in this transfer function and in the diagram;

this represents remnant "injected" by the human operator into the control activity.

Specifically, it is the control activity that is not linearly correlated with the input.

This component of the control activity of the human will receive more attention in

Section 2.4, in which measurement techniques will be discussed.

2.3.2 One-cue Model

We turn now to the case in which the explicit state information considered previ-

ously is replaced with a visual cue (c_), which has presumeably been obtained from a

perspective display (see Figure 2.6). The visual cue ct is some characteristic or fea-

ture of the image, but as was shown in Equation 2.8, it can be expressed as a linear

combination of the states x and O:

= Koo( ) (2.15)
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The eye-brain system infers both o' and its derivative flom a perspective scene like

Figure 2.4. The operator does not have any explicit measurement of the state z

available in this case; instead, the operator selects a visual cue o, which is correlated

with z, and controls a, directly.

The system of transfer flmctions relating control 5, longitudinal position x, and

pitch attitude 0 is:

= +

where Y_(s) is shown in the gray box in Figure 2.6. The only difference between

this transfer function, and the one previously defined using the Crossover Model

(Equation 2.14), is the addition of 0(s), which reduces the level of correlation between

the visual cue c_ and the desired state s. Since the parameter Ko directly scales the

magnitude of the disturbance (0) being added to the system, one would expect the

operator to choose a visual cue that minimizes the magnitude of Ko, so tliat the true

position z dominates the cue.

2.3.3 Two-cue Model

We will now consider the case in which the operator is using two visual cues to

accomplish the task (Figure 2.7). In this model, one visual cue (7) is being used for

position, and another cue (_) is used for motion, or velocity. -_ and _ are defined as:

= + (zlr)

/3(s) = z(s) + I(50(s) (2.18)

In this case, the eye-brain system is inferring % and the derivative of _, from the

perspective scene. These two cues could be likened to the position of a feature in the

image (_/), and the motion of some portion of the image detected in the peripheral

vision (/3).

The transfer-function system relating 5, :c, and 0 for this case is:

0V(s) = -Yp(s)x(s)- Yp(s)t£_ (s +wL) 0(s) + r(s) (2.19)

sin this case, 0 is in fact independent of .v. so it acts here as an independent disturbm_ce.
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Human Operator YP

_..=+ x

perspective
transformation I x

+ I

q

Figure 2.7: Block diagram of two-cue model for current task. The operator is now

assumed to use one visual cue for position 7, and another for motion _. Note that the

':differentiation" of the motion cue, /3, occurs inside the operator; there is no direct

display of motion in the perspective display. This motion cue is only derived through

the perceptual process of the human. The presence of two separate cues, for motion

and position, implies that the operator is concurrently attending to and using two

sources of visual information. The commanded state, as in the previous cases, is to

maintain the current visual-cue state (i.e., ':don't move").
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Matlmmatically, this differs from tile one-cue model (Equation 2.16) through tile

addition of a lag-lead element multiplying 0(,s) in tile two-cue model (lag-lead for

I(.y > K3). The two models arc otherwise identical. As was tile case with the one-cue

model, the terms K,3 and K-y are essentially gain terms which scale the disturbance

source (0) being added to the states; one would expect the operator to minimize K_

and I(y when possible. Also note that this model rew_rts to the one-cue model form

when K_ and tC t are equah A',9 = A'-_.

2.4 Transfer-Function Measurements

Equations 2.16 and 2.19 describe models that represent the characteristics of the

human operator. If the objective is to determine the functions and parameters in the

models (Yp, Ko, I(_, I(_.), the available experimental measurements nmst be related to

these model functions. The Sum-of-Sines (SOS) technique has been used extensively

in manual control to develop transfer flmctions from measurements. The basic steps

are:

1. Design input signals that enable effective identification

2. Relate the cross spectral densities to model transfer functions

3. From time-history measurements, estimate pertinent cross spectral density ra-

tios

4. Identify model parameters to fit the transfer functions

The last step in this process, identification of model parameters, will be discussed

in the subsequent chapters. This is because the number of parameters used in the

models varied with experimental treatments. In this section, the first three steps will

be discussed. Much of the detail is included in the appendices to facilitate explanation.

2.4.1 SOS Input Signals

The first step, design of the input signals, is what sets SOS techniques apart from

other transfer function measurement techniques. In this technique, multiple sine
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functions, at different frequencies,are summedto createa random-appearinginput

signal. There are severaladvantagesto using this type of input signal:

1. Signal power is concentrated in discrete frequencies,creating good signal-to-
noisecharacteristics.

2. The random appearanceof the signal preventsthe operator from anticipating

the input (which would elicit a predominantly open-loop, rather than closed-

loop, control strategy).

3. The input signalscanbe designedto simplify the relationship betweenthe cross

spectral density estimatesand the transfer functions. This is accomplishedby

creating independentsignals,which act simultaneouslyo_ a system,and have
no linear correlation with eachother.

The designof the input signals involves specifying multiple parameters, including

the run length, sampling intervals, and frequencycomponents.Guidelinesfor proper

selectionof theseparametersare presentedin SectionB.1 of Appendix B.

2.4.2 Transfer-Function Relationships

The second step of'the process is to relate the cross spectral densities of system states

to model functions. Figures 2.8 and 2.9 contain block diagrams for the purposes of

identification for the one-cue and two-cue models, respectively. The terms u and q

are the disturbances to the longitudinal acceleration and pitch rate, respectively. The

term r is the remnant component of the human control output; it is that component

which is not linearly corre]ated with the inputs to the operator.

For the one-cue model, the following relationships can be derived:

1
(_ - [-YpYcU- Ypl(oO + r] (2.20)

l +
1

x - [Y_u - YpYcK_O + Y_r] (2.21)
l+Eyc

(2.22)
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Yc

x

K(z

x
r

Figure 2.8: Block diagram of one-cue model used for transfer-function identification.

The free parameters assumed in this model form are the parameters that specify the

transfer function Yp, and the visual-cue parameter Ko. Ko is related to the one visual

cue that is used for both position and motion sensing. This realization is equivalent

to that depicted in Figure 2.6,

Yp ._j v_j.)

x

Yc

K[3 [s * (KT/KIB)_L] !=
[s + COL] [

x
y

Figure 2.9: Block diagram of two-cue model used for transfer-function identification.

The free parameters assumed in this model form are the parameters that specify" the

transfer function Yp, and the visual-cue parameters K s and Kv. Ke is related to the

visual cue for motion, Ky relates to the cue for position, aaL is one of the parameters

of Yp (not shown explicitly here), and defines the amount of lead the operator is

generating. This realization is equivalent to that depicted in Figure 2.7.

35



Tile relationships of the ratios of power spectral densities and cross spectral den-

sities are:

¢_,, _ -_Yc¢_,_ - YpKo¢o. + 6_ (2.23)

Oaq _ 1 -YpZc_uq - YpI_o¢Oq -_ _rq (2.24)

eoq . 1 + YpYc eoq

No assmnptions have been made about the input signals u and q up to this point.

be used to make u and q uncorrelated with each other.

= 0, the Equations 2.23 and 2.24 become:

The SOS technique can

Specifically, for 00_ = O.,q

-- (2.25)

¢aq _ 1 _KoOOq + O_q (2.26)
C/)Oq 1 -- YpYc 6oq

If we further assume that the remnant noise source r is not correlated with t'he input

signals q and u, making ¢_q = ¢_ = 0, the relationships become:

_5_u

qSx_

ooq 1 - YpY_
(One-Cue

(2.27)

(2.28)

These relationships give us a direct method for determining the functions to describe

Yp and Ko. The two-cue case is quite simple to derive from this point. In the block

diagrams, the only difference between the one-cue and two-cue models is that in the

two-cue model, the term I(_ present in the one-cue model is replaced with a more

complex term. By substituting this term in for K_, derivation of the two-cue case is

_5_u

_x_

Oa_ Y_tG

OOq 1 - Y;Yc

K_

(s + we)

(2.29)

(Two-Cue) (2.30)

trivial:

2.4.3 Cross Spectral Density Estimates

Equations 2.27, 2.28, and 2.30 defined the relationships between the model functions,

and particular power and cross spectral densities. The actual parameters measured
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in an experimental run are time histories of 5, x, 0, q, and u. When using the SOS

technique, tile cross spectral density measurements can be approxinmted by products

of the coefficients of the Discrete Fourier Transforms (DFTs) of the time signals [61].

The relationships are:

1

0a,(fo.,,,) _ -_D(f)U(f)* (2.31)

1

4,._,,(fw.,) _ N (f)U(f)* (2.32)

1

Caq(.fw_) _ -_D(f)Q(f)* (2.33)

1

¢oq(fa)s) _-, -_o(f)Q(f)* (2,34)

where N is number of points in the time sequence, and D(f), U(f), Q(f), and

@(f) are the coefficients of the DFT of the respective time sequences. For a discrete

sequence z(n), n = 0, 1,...,N- 1, the DFT coeflqcient X(f) is defined as:

N- 1 t_;

X(f) = _ :r(n)exp(-j2rrkN) , f = _,
_ _ 0

h: = 0, 1,..., N - 1 (2.35)

The variable f is a "normalized" fl'equency which goes from values of zero to N/(N -

1). Note that the cross spectral densities have been expressed as a flmction of fw,,

which is a frequency related to the time domain (in rad/sec).

frequency, related to the sampling interval T:

1

w_ = _ (2.36)

We will now define new terms Izp and I/o:

w_ is the sampling

Yp(fa4) = (D(f)U(f)*) (2.37)
(X(f)U(f)*)

Yo(fa4) = (D(f)Q(f)*) (2.38)
(O(f)Q(f)*)

From Equations 2.27, 2.28 and 2.30 above, we expect these quantities to be related

to the models as follows:

Both Models: Yp = 1/; (2.39)
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One-Cue Model: Ye = Z_l (2.40)

Two-Cue Model: 175 = Ye2 (2.41)

where

Yel - (2.42)
1- YpY_ '

K

Yo2 : YpIt'/_ (s + _-_Wg) (2.43)
1-YpYc (s+coL)

To summarize, Yp and 128 are the ratios of the estimated power spectral density and

cross spectral densities of specific time histories. Note that the measurements 12p and

120 are based upon ensemble averages of multiple time histories. This technique was

developed by Levison [62], as were methods to estimate the standard error of the

measurement. This is described in more detail in Section B.2 of Appendix B.

The techniques up to this point describe only how to inferrentially derive the

transfer functions _, and 128 from the available time histories. These transfer fimctions

are related to the model parameters in the last step of the process. This process is

described in detail in Section 3.2.2.

2.5 Parameters of the Visual Cue Control Model

Section 2.2 contained the development of a model of perspective-scene viewing and

visual-cue selection. This model included a parameter (Kx, Equation 2.9) which was

a function of the particular visual cue selected. In this section, the expected values

of that parameter, for a variety of potential visual cues, will be derived.

Prior to discussing particular cues, two concepts will be introduced that are rel-

evant to the examination of all cues. The first concept is that of absolute versus

relative cues. The second concept is that of choosing directional components.

2.5.1 Absolute versus Relative Displacement

Because the image surface is two-dimensional, displacements of scene features with

respect to any reference should be described as a vector. Using the image-plane
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coordinatesystemasthe reference,wewill denotethe displacementof featurei to be

(Figure 2,S):

d_ = y,3 + z,_" (2.44)

This type of displacement, measured in tile image-pirate coordinate system, will be

defined as an absolute displacement. It is also possible to consider the displacement

between two features in the image. The vector displacement between the ith and jth

features would be:

do - d, = (V, - >)5 + (_ - _-,)i (2.45)

This type of displacement will be defined to be a rela/.we displacement.

These displacements have been defined in terms of the image-plane coordinates.

For later manipulations, it will be necessary to express these displacements in terms

of the feature locations and operator location and orientation. Substituting Equa-

l.ions 2.a and 2.4 into Equations 2.44 and 2.45 produces:

D_, , _.+ ((Dx, - X)s@ + c@) ],]d, F (2.40)
((Dx, - X)c@ - s@) J ((Dx, - X)c@ - s@) J

[/1"_.. _D" ((Dx_- X)c@ -sE))DY3 })da-d, = F t((Dx -X)cO-s@)-

{((Dx-X)se+ce) ((Dx-X)se+ee)} ]+ ((Dx, - X)c@ - sE)) - ((Dx, - X)c@ - s@) _ (2.47)

Defining the vector displacement of a feature relative to the image-plane coordi-

nate system is only one step in the definition of a visual cue. As used in the model,

a visual cue is a scalar, not a vector, quantity. To convert these vector displacements

to a scalar quantity for use as a visual cue, the concept of directional components is

introduced.

2.5.2 Directional Components

The assumption is made that the operator is capable of attending to displacement that

occurs in a particular direction or orientation. Indeed, often the motion can only be

discerned in one direction (as in the case of a line, where motion along the line cannot

be discerned; only motion perpendicular to the line (:an be detected). One probable
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Pk

Figure 2.10: Coordinate system used to derive directional visual cues.

cue would be discerning displacement in the vertical or horizontal direction. In cases

where the image has a sharp outer boundary (as in the frame of a monitor), this

boundary can serve as a strong, fixed reference for the operator. In addition to vertical

and horizontal components, the operator might be able to attend to displacement that

occurs in the direction of a scene feature. One such feature might be along lines of

splay 6. Particularly in the case where the operator is viewing a scene through a non-

rectangular window (as is the case with many vehicles), the operator might also attend

to displacement or motion in a different direction than the image coordinate system

derived here. In that case, we can express the absolute and relative displacements in

terms of another coordinate system through a coordinate transformation.

A new coordinate system can be defined, j' and/_' (Figure 2.10):

j' = 2cos(_) + tcsin(_) (2.48)

k' = -3 sin(_) + kcos(_) (2.49)

Combining these definitions with the absolute and relative displacements derived

GA line of splay is a line parallel to the direction of motion. In the experiments done in this
research the lines of splay are always longitudinal, which is the direction of motion.
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above,wecan expressthe displacementsrelative to the new coordinate system:

d, = (y, cos(_)- z, sin({))j' + (y, sin(g'-) + z, cos(_))£' (2.50)

d a -d, = ((Ya- _j,)cos(_)- (zo - z,)sin(_))j'

+((y, - y,) sin(._) + (z, - z,) cos({))k' (2.51)

These relationships can also be expressed in terms of the scene and operator variables

as was done previously.

d_ { D_ cos({)- -F ((D.v - X)ce - sO)

((Dx, - X)sO + cO) sin(_)/3'
((Dx, - X)cO - sO) J

"{ D}.; sin({)+ ((Dx,- X)c@-sO)

(2.52)

d a - d7 { D_I D_ 5= V (((Dx,-x)_e-sO) -((Dx,-Xi-cO-sO) )c°s(_)

_(((Dx - X)se + cO) ((Dx,- X)se + cO) }-- X)cO- s(_)))sin(_)J'((Dx, - x)ee - sO) ((D_,

Dy, D_ 5
+

(((Dx, - X)cO - sO) - ((Dx, - X)cO - sO) ) sin(¢)

+(((Dx, - X)sO -I-cO) _
((Dx, X)eO sO) ((Dx-X)se+ce) } ]((Dx, X)ce-sO) )c°s({) £' (2.53)

To examine cues that are relative to lines of splay', it is necessary to deternfine

the coordinate transformation. Defining the angle a splay line at Dy makes with the

vertical to be {, the sine and cosine will be:

DycO
sin({) = (2.54)

{Dy2c20 + 1

1
cos(_) = (2.55)

{Dy2c20 q- I.
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For relatively small values of O, this angle will essentially be fixed for a particular

line. That is, the angle of a particular line of splay (located at a lateral displacement

Dr, in the above equation) will remain fixed.

2.5.3 Illustrative Examples

These concepts will now be applied to the derivation of several possible cues for

the current task. The desired quantity is the relationship I(a, which determines

the relative contributions of longitudinal displacement and pitch displacement to the

visual cue displacement. Five different types of cues will be defined, and an expression

for Kx will be developed for each one. Examples of each type of cue are shown in

Figure 2.11.

Absolute Vertical Displacement (A_)

A_,

Tile value of Kx is defined as:

This cue is equivalent to the operator attending to the absolute vertical displacement

of a feature in the image. The value of this displacement will be determined from

the component of absolute displacement in the k direction of Equation 2.46 (which

is equivalent to z_).

= _F ((Dx, - X)s@ + cO) (2.56)
((Dx, - X)cO - sO)

Kx = 0A/c)O (2.57)
an/ax

From the previous definition of A,,, we can compute:

OAr _ F[ sO ce[(Dx,- X)sO+cellox L[(D*"- k-Tee- sol- _ - 276= 70-7] (2.56)

[(D_,.- X)sO+ col2]OAv _ F 1 + (2.59)
oo [(D.v- X)cO - se]2J

Evaluating at the linearization conditions of X = 0 and 0 = 0, we have:

OA,,oxx=o,e=o - D},F (2.60)

0Av = -F 1 + (2.61)
X=0.O=0
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Av

Figure 2.11: Examplesof potential visual cues. Cuescan be definedasthe position
of a feature, or the displacementbetween two features. Potential features include
lines, and junctions of lines (suchas grid intersections). The displacementof a line
whoseendpoints lie outside of the frame of the image canonly be observedperpen-
dicular to the line, and thus the direction in which displacementor motion can be
detected is constrained. Particular points, suchas formedby grid intersections,can
apparently bedisplacedor havemotion which is unconstrained.The subscriptsh and

Ah refer to visual cues formed by horizontal judgements made in the image plane;

it can be the horizontal displacement between two features (A_h), or the absolute

horizontal displacement of a feature in the image (Ah). The subscripts v and Av refer

to vertical judgements, such as the absolute vertical position of a line, or the vertical

displacement between two features (A_ and Azx_, respectively). The s subscript refers

to judgements in displacement or motion of a feature that are made relative to the

direction of a line of splay (A_), and is thus highly dependent on the location of the

feature in the image (since the angles of lines of splay vary as a flmction of their

location in the image.)
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Correspondingly, Ka for this cue is:

]£),v = D2x, + 1 (2.62)

Note that Dx, is the longitudinal position of the feature relative to the operator.

As the feature gets farther from the operator, Ka v gets larger rapidly. If the goal of

the operator is to choose the lowest possible value of K_, for this visual cue one would

expect the operator to use the closest feature available.

In the remaining derivations, the expressions for dA are presented for X = 0 and

(9 = 0; the intermediate derivation steps are omitted.

Absolute Horizontal Displacement (Ah)

This cue is equivalent to the operator attending to the absolute horizontal displace-

ment of a feature in the image. The value of this displacement will be determined

from the component of absolute displacement in the ) direction of Equation 2.46

(equivalent to y,).

Ah = -F Dr, (2.63)
((Dx, - X)cO - sO)

The differential of this cue is:

dAb = -F D--%V'2dx- F D--%V'2dO
x =o,o:o Dx, Dx,

For this cue, the value of Kx at any location in the image is:

(2.64)

Kx h = 1 (2.65)

Relative Vertical Displacement (A_v)

With this cue, the assumption is made that the operator can perceive the vertical

component of the relative displacement of features located at longitudinal positions

Dx, and Dxj.

AAv = F
((Dx, - X)sO + cO)

((Dx, - X)cO - sO)

((Dx,- X)sO+ co)] (2.66)
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The differential is:

r I2 Dx,2 dX+F 2 dOx=0,e=0 ., DTv, 2 Dx,
(2.67)

For this cue, the value of Kx is:

I_'_,, = 1 (2.68)

Ka_ is not dependent on the features chosen for reference. An example of this cue

would be if the operator were attending to the displacement between the horizon and

the baseline.

Relative Horizontal Displacement (Az_h)

With this cue, the assmnption is made that the operator can track magnitude of

the horizontal component of the relative displacement of features located at lateral

positions D_; and Dy.

D<AAh = F ((Dx, - X)cO -

The differential is:

dAzxh r Dy i
x=o,o=o = Yt_x, 2

For this cue, the value of Ka is:

DL sO)]sO) - ((D.,- -  -ycO -

D}" ] dX + F " DY'9.
Dx, 2 d -D2,:,

(2.69)

1, o (2.70)
Dx, 2j

I(x_ = ] (2.71)

Again, A'a is unity, regardless of the features chosen for reference. An example of this

cue would be if the operator were attending the displacement between two points on

the baseline.

Displacement Aligned with Splay Line (A_)

To determine the component of displacement that is aligned with the splay line, the

k' component of d, in Equation 2.46 is combined with Equations 2.54 and 2.55. As

derived here, this is an absolute cue, since it is based on the component of the absolute

displacement d, that is parallel to the line of splay. In practice, to use this absolute
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cue. the operator would needto rememberthe original position of d, in the image

plane, derive the displacement from it, then determine the component of displacement

along the nearest line of splay. While this does not seem practical for position sensing,

it is plausible that the operator can sense the motion of this cue: that is, the operator

could sense the component of motion of the point parallel to the line of splay near

(or on) which it lies. The expression for this cue is:

8
Dy, D_; c @

- -F ((Dx-X)c_)-slg) v/Dy2c219+ 1

-+ ((Dx, - X)s(9 + c(9) 1 } (2.72)
((Dx, X)eO-se)¢Dy2c2e+l

The differential of this cue is:

dAs (Dr'2 + 1) + 2= -F (DY'2 + 1) dX- F Dx, de (2.73)

2 2 Dx2v/DY, 2 + 1x=0,e=o Dx, _D E + 1

The value of/Ca will be:

Ka, DY'2 + Dx'2 + 1 (2.74)
= D_;2 + 1

The sensitivity of this cue varies as a functiori of location in the image. Transforming

the expression back into image coordinates can be done by recognizing that for X = 0

and (9 = 0, the relationship between screen coordinates (y,, z,) and feature coordinates

(Dx, Dy) is:

Yz

Z l

= -F D_---2 (2.75)
Dx

1
-- F-- (2.76)

Dx

Substituting these expressions for Dy and Dx back into Equation 2.74 will provide

that is a function of screen coordinates, y, and z,, and focalan expression for /CA_

length F:
y 2

K_, = 1 + y2 + z_ (2.77)

When lines of constant K_, are plotted as a function of image coordinates, it can

be seen that the isolines of Ka, are concentric circles radiating out from the image
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Cue (A) KA

1

D_.-_I

Table 2.1: Expressions for K_ for proposed visual cues

center, with Ii'A., getting smaller as the distance fronl the image center increases. Also

note the effect of the focal length. As the focal length increases (assuming fixed image

size, or maximum values for y, and &), the value of I_2A, increases. This is equivalent

to the case of a telephoto lens, that subtends a relatively small field of view. This

would be like looking though a straw at the horizon; very little image motion results

from longitudinal motion, and a great deal results from pitch motion. With a very

small focal length (e.g., a wide-angle lense), KA, decreases. This case would result in

nmch more overall image motion resulting from longitudinal motion, except for those

parts of the image that are insensitive to longitudinal motion. It can be seen that at

the very center of the image (y, - _ - 0), Ka, becomes infinite; this is because all of

the image motion results from pitch and none results from longitudinal motion.

The expressions for I_'a for each type of proposed cue are presented in Table 2.1.

The actual values of Ka for particular texture types will be considered in Chapters 3

and 4.

This chapter contained the derivation of visual cue models, transfer function mea-

surement methodologies, and characteristics of visual cues. The next two chapters

contain descriptions of two experiments performed to validate the models derived in

this chapter, and to show how to estimate the values of their constants.
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Chapter 3

Experiment 1

The previous chapter contained the derivation of two forms of the VCC model. The

primary purpose of this experiment was to determine if the VCC model could rep-

resent the input/output relationships of the human operator performing a manual

control task using a perspective display. In particular, which form of the model

(one-cue or two-cue) was superior? A second goal was to determine if systelnatic

variations in the task variables could produce systematic variations in the control

strategy and/or performance. To determine this, variations were introduced in both

the nature of the disturbances perturbing the system, and to the content of the per-

spective scenes. The purpose of testing with systematic variations was to facilitate

development of the model under a variety of conditions.

The data analysis of the experimental results includes both Analysis of Variance

(ANOVA) and individual modeling. The ANOVA was performed to assess the degree

to which variations in the task variables produced variations in tile control strategy

and performance. The individual modeling consisted of fitting parameters of both

of the VCC model forms (one-cue and two-cue) to experimentally derived transfer

functions.

The results of this experiment will show that both forms of the VCC model pro-

vide good representations of the input/output characteristics of the operator in the

majority of cases. However, high variances in the transfer function measurement pre-

vented conclusive determination of which model form was superior (for this reason, a
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second experiment, Experiment 2, was developed to focus on this issue, as Chapter 4

will describe). The variations in the task variables did produce measurable effects in

the control strategy and performance.

A description of the experimental protocol is provided in Section 3.1. Section 3.2

contains the experimental results from both the ANOVA,analyses and the individual

modeling, and Section 3.3 contains discussion of those results.

3.1 Protocol

3.1.1 Participants

Six participants were used. They were recruited from a contractor pool at Antes

Research Center. All were male flight instructors, with experience ranging from 270

to 620 total flight hours.

3.1.2 Apparatus

A sinmlation was developed on a Silicon Graphics Indigo II Extreme. Control inputs

were supplied with the 3-axis joystick in a B&G Systems Flybox. The color monitor

had a 19-inch diagonal screen, with resolution of 1024 vertical and 1280 horizontal

pixels. Operators were seated approximately 20 inches from the display. This resulted

in approximately 30 vertical by 37.5 horizontal degrees of visual angle subtended by

the display. The sinmlation had a 33.3 Hz update rate (from a .03 second sampling

interval), and the monitor refreshed at a rate of 72 Hz noninterlaced. The joystick

information was updated at the simulation update rate of 33.3 Hz.

The dynamics of the vehicle were described in Section 2.1. The actual discrete

transfer functions used, as well as the disturbance dynanfics, are presented in Sec-

tion D.1 of Appendix D.
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3.1.3 Scene

Modifications to the visual scene were done by applying different types of patterns

to a simulated ground plane; these pattern types are referred to as textures. In this

experiment, four textures were presented, shown in Figure 3.1. The texture types

were; 1) Grid (G), 2) Parallel (ll), 3) Perpendicular (_/), and 4) Line (L). All of the

textures featured a line on the ground plane, referred to as the baseline (perpendicular

to the ostensible direction of motion of the operator), located 3 eyeheights in front

of the operator. In the Grid texture, lines both perpendicular and parallel to the

direction of motion of the operator were present (this included the baseline). In the

Parallel texture, the parallel lines and the baseline were present. In the Perpendicular

texture, only the perpendicular lines were present (including .the baseline). In the Line

texture, only the baseline was present. The lines perpendicular to the direction of

motion were spaced at 0.5 eyeheight intervals; the lines parallel were spaced at 0.78

eyeheight intervals.

All scenes were rendered with a 60-degree vertical field of view, which resulted

in a 75 degree horizontal field of view. This represents approximately a 2-to-1 ratio

between the field of view displayed and the actual viewing angle of the display. Al-

though significantly non-conformal, the large field of view is fairly consistent with the

large fields of view typically available on flight vehicles (particularly the horizontal

field of view). The operator of an unmanned aerospace vehicle (UAV) can be pre-

sented with a similar situation; the image from a camera with a wide-angle lens can

be displayed on a monitor that actually fills a nmch smaller visual angle than the

visual angle subtended with the camera.

The ground plane was linearly shaded from light to dark from a position directly

under the operator to a distance of 15 eyeheights in front. The dark color was main-

tained from that location to the horizon. This was done to minimize the effects of

aliasing in the lines distant to the operator. As in one-dimensional signal processing,

aliasing in an image occurs when the frequency content of the image is higher than

the Nyquist frequency (half of the sampling frequency). Specifically, near the horizon,

the distance between individual lines becomes less than one pixel, which is a higher

spatial frequency than the display can support. In concrete terms, the aliasing makes
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Grid Parallel

Perpendicular Line

Figure 3.1: The four texture patterns used in Experiment 1.
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the lines in the vicinity of the horizon seem to flicker, and a particular line will move

up and down one pixel in a way that is not related to tile motion. Tile distance of 15

eyeheights was chosen to correspond to the distance at which the visual angle sub-

tended between two lines perpendicular to the line of sight would correspond to less

than two pixels. The graphical rendering was clone with no hardware anti-aliasing,

and the lines were all one pixel wide. There was also no depth cueing enabled. Thus,

the operator could not get any position information from the perspective thickening

of the lines as they grew closer, or from changes in contrast due to distance.

Visual-Cue Characteristics

As will be seen, the results of the experiment include the derivation of parameters

that are related to the characteristics of visual cues in the scene. Therefore, in order

to compare the measured values of the parameters with the available visual cues, it

is necessary to determine what the theoretical values of those parameters would be

for particular cues. Five potentially available cues were discussed in Section 2.5.3;

expressions for the value of I(a were derived for each of these cues, shown in Table 2.1.

Examples of the visual cues were also shown graphically in Figure 2.11. Only two

of the visual cues proposed, A_ and _,, are a flmction of the scene features used to

derive the cue. For the four texture conditions used in this experiment, the available

ranges of A'_ are derived.

The cue A_, is defined as the absolute vertical displacement of a scene feature.

The fixed reference point that the displacement is measured relative to can be any

landmark fixed relative to the image. One of the most likely references would be

the bottom edge of the display; the example demonstrated in Figure 2.11 was the

displacement of the baseline (in the image) relative to the bottom of the display.

The expression (Equation 2.62) for Ka_ is:

K_ = D_- + 1 (3.1)

Dx is the longitudinal displacement of a feature (the feature being used for the cue)

relative to the operator. For this task, the closest feature is the baseline, located 3

eyeheights in front of the operator. The subsequent lines are spaced at intervals of .5
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Cue Grid Line

A_. >_ 10 10

ALx,, 1 1

Ah 1 --

Aaa 1 --

As > 2.8 --

Texture

Parallel Perpendicular

10 > 10

1 1

1

1

3.6, 6.6 or 10

Table 3.1- Values of A'x for proposed visual cues in Experiment 1. These cues are

depicted visually in Figure 2.11.

eyeheights, up to a distance of 15 eyeheights from the operator. Accounting for this,

the minimum obtainable vaJue of Ka_ would be 10. In the Grid and Perpendicular

textures, intermediate values of Kay would exist (KAy = 13.25, 17.0, etc.). In the

Parallel and Line textures, only the baseline is available to base this visual cue on,

therefore Kx_ = 10.

The other cue that varies as a function of scene features is k_. This cue was

defined as the component along a line of splay of the absolute displacement of a scene

feature. The expression (Equation2.74) for K_, is:

D,_ + D} + 1

K._ : D} + m I. (3.2)

Dx and Dy define the longitudinal and lateral position of the feature (relative to the

operator) used for the visual cue. Since the Perpendicular and Line textures do not

have any features that exhibit lateral movement, this cue is not available in these

textures. In the Grid texture, it can be shown that the minimum obtainable value of

Kx_ is 2.8. In the Parallel texture, there are a limited number of features for which

this cue is available; specifically, the intersections of the baseline and the lines of

splay. For this texture, the minimum obtainable value for Ka, is 3.6.

Table 3.1 presents theoretically obtainable values of Ka for each of the visual

cue and texture combinations. It was discussed previously that the operator could

minimize the effect of the pitch-attitude disturbance by minimizing K_ when possible.

From this visual cue analysis, one would expect the operator to use one of the three
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cues that, yield _/(a = 1 whenever possible. It should also be noted that in all of the

texture conditions, there is one cue available that yields Ka = 1, namely _:,_.. This

cue is potentially available, in all of the textures, through sensing of the distance

between the horizon and the baseline.

3.1.4 Task

As was previously described in Section 2.1, the objective was to maintain a constant

position in the presence of disturbances. The operator was verbally instructed to keep

the longitudinal position fixed at the position at the start of the trial (which was the

same for all trials). The operator was informed that he could control only longitu-

dinal position, and not pitch, and that both pitch and position would be subject to

disturbances. Operators were also instructed to develop their control strategies dur-

ing the training runs; once data runs were begun, they were instructed to maintain a

consistent control strategy for a particular texture.

3.1.5 Procedure

Each operator participated for one day. The experimental protocol consisted of a

block of training runs and two blocks of data runs. The data-run blocks were iden-

tical to each other except for the randonfized phase angles used to initialize the

disturbances. In both the training and data blocks, six experimental conditions were

tested on each of the six operators; the conditions are enumerated below.

1. Grid, no pitch (G/O)

2. Line, no pitch (L/0)

3. Grid, with pitch (G/l)

4. Line, with pitch (L/l)

5. Parallel, with pitch (ll/1)

6. Perpendicular, with pitch (_1_/1)
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Operator

1

2

3

4

5

6

Condition

g/0 G/1 II/1 L/1 G/0 2_/1

L/1 _1_/1 G/0 g/0 II/1 O/1

G/1 El0 II/1 O/0 El1 ±/1

G/0 ±/1 L/1 G/1 II/1 L/0

II/1 L/0 G/1 _1_/1 L/1 G/0

2-/1 G/0 L/1 [[/1 G/1 L/0

Table 3.2: Experiment 1 presentation order by operator. The first character denotes

the texture type; the second character denotes if the pitch disturbance was present

(1) or absent (0).

Each operator was given a different presentation order for the conditions. In the

training block, operators were given six sequential training runs in each of the six

conditions, for a total of 36 training runs. In the data blocks, the operator was

given one training run and then three data runs for each condition. The order of

presentation (shown in Table 3.2) remained fixed for the training run and both data

runs.

Each data run lasted a total of 4 minutes, 10 seconds. Training runs lasted 55

seconds. Both data and training runs were initiated by the operator by using the

mouse button. During the first five seconds, there was no activity in the display, and

an auditory signal was given at one-second intervals. For the next five seconds, the

display and control became active, and the disturbances ramped linearly from zero

to flfll intensity. The simulation proceeded with full-strength disturbances for the

remaining time (4 minutes for data runs, 45 seconds for training runs). Following

this, the operators received feedback after both training and data runs on their per-

formance; the feedback consisted of a single value derived by summing the root mean

square (rms) velocity (in eyeheights/sec) and rms longitudinal position (in eyeheights)

from the training run.
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3.1.6 Experiment Design

The design consists of two nested factorials: a 6 x 2 x 2 with repetitions, textures

(Grid and Line), and pitch disturbance (with and without) as factors; and a 6 x

4 with repetitions and texture types (Grid, Parallel, Perpendicular, and Line) as

factors (pitch disturbance was always present). The dependent variables included:

the percent of control ((_) power correlated with pitch disturbance (q); percent of

control power correlated with longitudinal disturbance (u); longitudinal velocity rms;

and longitudinal position rms. To simplit_ later discussion, the following symbols are

introduced to identify these four dependent variables:

rs0:

RMS_.:

RMSx:

% of control ((_) power correlated with the pitch disturbance (q)

% of control (_) power correlated with the longitudinal disturbance (u)

longitudinal velocity rms

longitudinal position rms

3.2 Results

3.2.1 Analysis of Variance (ANOVA)

An Analysis of Variance (ANOVA) was conducted for each of the two factorials; 1)

a 2x2 factorial analysis with texture (Grid vs Line) and pitch disturbance (present

vs absent) as factors1; and 2) a one-way ANOVA examining the effects of the four

textures with the pitch disturbance present. The ANOVA assesses the probability

that observed differences in dependent measures across conditions are due to random

variation. This is done via a comparison of differences between conditions to vari-

ability within conditions. Measuring performance for all conditions in a single group

of participants (i.e., a within-subject design) is generally more powerful than having

1Factor is another name for independent variable. The term "n x m" factorial denotes a design in
which two factors are varied; n levels within the first factor, and m levels within the second factor.
In this 2 x 2 factorial, two pitch disturbance levels (present and absent), and two scene textures
(Grid and Line) were considered. Repetition is not considered a factor of theoretical interest in this
study. Rather. multiple samples were taken for each pitch disturbance x scene texture condition to
provide additional statistical power.
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Symbol Meaning Probability of Chance Occurrance

+ statistically significant p _< 0.05

+ marginally significant 0.05 < p <_ 0.10

0 not statistically significant 0.10 < p

Table 3.3: Summary of statistical significance terminology

different participants in each condition (i.e., a between-subjects design) since the im-

pact of individual differences is mitigated. Differences that would occur by chance less

than 5°7o of the time are considered statistically significant (i.e., p < 0.05). An effect

or interaction is considered to be marginal if the probability of it occurring by chance

is between 5_ and 10%. Rather than present the numerical values for each analysis

factor, the results are summarized in tables, in which "+" represents a probability of

chance occurrence less than 5% (statistically significant), %" is a probability between

5% and 10% (marginal), and "0" represents 10% or greater probability of chance

occurrence (i.e., a null or nonsignificant finding). These relationships are shown in

Table 3.3.

The dependent measures examined in both factorial analyses were: the percent of

control power correlated with the pitch disturbance (Pa0); percent of control power

correlated with the longitudinal disturbance (P&); longitudinal velocity rms (RMS_);

and longitudinal position rms (RMS_).

The 2x2 ANOVA results comparing the effects of texture (Grid vs Line) and

pitch disturbance (present vs absent) are shown in Table 3.4 and Figure 3.2. These

results indicate the pitch disturbance has a much greater effect when the operator

is using the Line texture than when he is using the Grid. Pao without the pitch

disturbance present simply represents the remnant that is present at the frequencies

that are later used to inject the pitch disturbance. When the disturbance is present,

Pao barely increases with the Grid texture, but increases significantly with the Line

texture. This increase in Pao is accompanied by almost a one-to-one drop in Pax.

Not surprisingly, both the outcome variables RMS_ and RMS_ are increased with the

Line texture when the pitch disturbance is present; this is an expected outcome from
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Factor

Measurement Pitch disturbance Texture Dist/Text Interaction

Pao + + +

Pax 0 + +

RMSx + + +

RMSx + 0 +

Table 3.4: Statistical significance for the 2x2 Analysis of Variance (textures × pitch

disturbance) from Experiment 1. ::+" indicates statistical significance, %" indicates

marginal significance, and "0" indicates lack of statistical significance.

injecting a disturbance into the control.

The results of the one-way ANOVA, exanfining the effect of texture alone (pitch

disturbance present), are presented in Table 3.5 and Figure 3.3. In this case, the

texture had a significant effect on Pao; it increased in the order of Grid, Parallel,

Perpendicular, and Line textures. Pax had a corresponding drop, similar to that

observed in the 2 x 2 ANOVA. RMSx and RMS, increased from the Grid to the Line

texture, although these measurements were nearly identical for the Perpendicular

and Parallel textures, even though the Parallel texture is associated with a lower

amount of pitch activity in the control. The reason no effect is observed in RMS_ and

RMS_ is probably because the operators occasionally "lost" the baseline reference

by moving too far forward. When this happened with the Parallel texture, there

were no positional or motion cues available, and the operator would have to adopt

an open-loop control strategy to move back enough to engage the reference. With

the Perpendicular texture, the operator would at least have some motion cues from

the other lines, and could reengage the baseline reference more easily. This tendency

probably negated any favorable effect on RMS_ or RMS_ due to the reduced pitch

disturbance feedthrough with the Parallel texture.

The numerical values of the means and standard errors for both analyses, as

well as the actual values used to deternfine statistical significance, are contained in

Section D.2 of Appendix D.
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Figure 3.2: Analysis of Variance (ANOVA) results for effect of texture and pitch

disturbance in Experiment 1. Operating with the cue gleaned from the Grid texture

is significantly better than with the Line-texture cue when there is an uncontrolled

pitch motion present. (Otherwise, the Line-texture cue is probably about as good

as the Grid-texture cue.) That is, getting higher rms errors and using more control
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pitch disturbance rejection (lower Pao) than the Perpendicular texture, but not as

good as the Grid. The lack of effect on the outcome variables, RMSx and RMS_.

is likely due to a tendancy for operators to "lose" usable visual reference with the
Parallel texture, when the one line in the foreground would disappear out of sight

when the operator moved too far forward.
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Factor

Measurement Texture

Pae +
+

RMSx +

RMS_ +

Table 3.5: Statistical significance for the one-way Analysis of Variance (effect of

texture) from Experiment 1. The "+'s" indicates that the date about the effect of

texture is statistically significant for all of these dependent measures.

3.2.2 Individual Models

The spectral density measurements _'p and Y0 (defined in Eqtiations 2.37 and 2.38,

respectively) were derived for each operator and condition using the techniques de-

scribed in [62], also summarized in Appendix B. Yp is the ratio between the control

activity 5 and longitudinal position x (the portion of it that is linearly correlated with

the longitudinal acceleration disturbance); its units are stick displacement/eyeheight.

120 is the ratio between the control activity and pitch attitude 0 (the portion which

is linearly correlated with the pitch rate disturbance); it is expressed in units of stick

displacement/rad. These ratios are complex relationships which describe the gain

and phase relationships between the input signals (x and 0) to the operator and his

control output (5). Each operator completed six data runs in each condition 2. The

spectral density measurmnents were based on the five time histories (of six taken)

that exhibited the lowest velocity and position rms. This was done to eliminate those

data runs in which the operators occasionally lost visual references. Although the-

oretically possible for one data run to have the highest velocity rms and another to

have the highest position rms, this never occurred in practice; in every case, the data

run with the highest position rms was also associated with the highest velocity rms.

2The cases in which the pitch disturbance is not present were not included in the individual

model fitting. The lack of a pitch disturbance makes it impossible to identify which visual cue is
being used. This is because the measurement };'0 is used to derive the parameters (_h'o, KO, and

K_) which are related to the perspective display and visual cue selection. The term "all conditions"
should be taken to mean those conditions in which the pitch disturbance was present.
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The relationshipsbetween the model parametersand the measurementsare de-

rived in Equations2.39through 2.43. In practice, it canbe quite difficult to identify

the model parameters that best correspond to frequency-donmin measurements. Sev-

eral approaches are possible. In one approach, the parameters of Yp, Y01 and Yo2 that

provide best fits to the measurements 12p and 120 can be determined through some

type of parameter optimization. This is an iterative, numerical search of some type,

and in this case would involve the determination of four or five parameters to fit 20

data points. The time required to apply this to all of the measurements (six operators

in four conditions yielded 24 individual sets of parameters to be identified) becmne

prohibitive.

It is also possible to find parameters of a discrete transfer flmction that best fit

the time-sampled data using non-iterative methods: however, this technique tends

to fit only the largest-magnitude portions of the response, neglecting the smaller-

magnitude responses. Since the magnitude of different frequency components can vary

appreciably, this approach does not yield very good correspondence with frequency-

domain measurements.

A third approach was developed, in which a discrete transfer function (DTF)

identification process was modified to provide a fit that corresponds closely to the

frequency-domain fit. This technique is described in detail in Appendix C. This

approach was combined with parameter optimization to provide parameter estimates

for the measurements available.

The model-fitting procedure used is as follows:

1. The parameters of Yp that best fit the measurement 12p were determined. The

form of Yv (e.g. order of nmnerator and denominator) was chosen to provide

a reasonable fit to 12p with the mininmm number of parameters. The modified

DTF identification process described in Section C.1 of Appendix C was used

for this parameter identification.

2. Using the identified parameters of Yp:

(a) For the one-cue modeh the free parameter of Yol (I_,a) to best fit the

measurement 120 was determined.

63



(b) For the two-cue modeL the free parameters of Yo2 (K_ and K_) to best fit

the measurement 120 were determined.

The grid search technique described in Section C.2 of Appendix C was used for

the identification of these parameters.

The reason for using the two different techniques is related to the number of

parameters to be identified, as well as the variances of the measurements involved.

The modified DTF technique involves a weighted least-squares solution, with the

inverse of the measurement magnitude partially determining the weights. When the

data exhibits large variances, some of the measurements can have a disproportionate

effect on the parameters. However, the level of complexity of the solution increases

very slightly with increasing numbers of parameters. It is ideally suited to cases with

low variances, in which the number of parameters make numerical solution techniques

particularly cumbersome.

The measurement 12p typically had low variances associated with it; the standard

errors for all conditions, operators, and frequency measurements are shown in Fig-

ure 3.4. The methodology for deriving the standard errors is described in Section B.2

of Appendix B. For the data generated in this experiment, the model Yv had three free

parameters (this will be described in more detail below). These two factors (low stan-

dard errors and larger number of parameters) made the modified DTF identification

method ideal for this data set.

The measurement I20, which is associated with one or two parameters, had rel-

atively high standard errors (Figure 3.5). The high variances, and low number of

parameters to be identified, justified use of the slower parameter-optimization tech-

niques for fitting to the I20 measurement.

The actual numerical values for all of the identified parameters, for all operators

and conditions, are presented in Section D.3 of Appendix D. In addition to the model

parameters, a fit quality index, or, is reported to help assess the quality of the fit for

each condition; it is defined in Equation C.10. Lower values of J indicate better fits.

The terms orp, or01, and -/02 refer to the fit quality indices for the models Yp, Yol, and

Yo2, respectively. As this data is quite extensive, only a subset will be presented in
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figure form in the body of this chapter. What follows are the most relevant results of

the model fitting to the nmasurements }_ and Y0.

As suggested by Equation 2.13, the simplest form of Yp that, consistently fit tile

data was:

Y_(s) = Kpe-TS(s + WL) (3.3)

The measurements from the highest two frequencies (at approximately 8 and 13

rad/sec) were not used for the parameter fitting. Initial attempts at parameter fitting

revealed a systematic error in the fit at these frequencies. Closer examination of

the data revealed that, at these two flequencies, the culprit was a pixel-jumping

phenomenon: the effect of the longitudinal position disturbance on the visual cues was

extremely small (less than one pixel peak-to-peak). The effect of the pitch disturbance

at these frequencies was still quite noticeable, approximately five pixels peak-to-peak.

In the other frequency ranges, the effects of both disturbances were easily observable.

Therefore, the parameter fitting was constrained to the first ten frequency points. The

actual plots of the measurements and model fits, for all conditions and operators, are

contained in Figures D.1 through D.24 in Section D.4 of Appendix D.

The derived values for Kp, r, and COb, as well as the index of fit quality Jp, are

presented in Table D.8. Overall, there appeared to be very little if any systematic

variation in these parameters due to the manipulation in texture. However, systematic

variations are not easily seen in these parameters because of the way in which the

parameters interact with each other. In manual control, it is common practice to

examine the characteristics of the product of the operator compensation (Yp) and

the controlled element dynamics (Y_). In particular, the variables of interest are

the crossover frequency We and phase margin 0_. Figure 3.6 shows the open-loop

frequency response of the nominal Crossover Model (Equation 1.1) with the crossover

frequency and the phase margin identified. The crossover frequency w_ and phase

margin Or, are defined as follows:

IYp(jwc)Yc(jW_)[ = 1 (3.4)

180 ° +/(Yv(jWc)Y_(jw_)) = O,,_ (3.5)

The crossover frequency is the frequency at which the magnitude of the open-loop
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Figure 3.6: Example Crossover Model frequency-response plot showing crossover fre-

quency coc and phase margin 6,,,. The open-loop frequency response of Yp(s)Y_(s) =

2.Se-25s/s is shown.
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transfer flmction is unity. The phase margin is the amount of phase in excess of-180

degrees of the open-loop transfer function evaluated at the crossover frequency. The

crossover frequency determines the bandwidth of tile system, or the frequency above

which tracking performance starts to degrade. The phase margin is a measure of tile

stability of the closed-loop system. When the phase margin approaches zero, slight

uncertainties in the plant dynamics or variations in loop gain can create unstable

closed-loop characteristics.

Crossover frequency and phase margin were deriw_d for all operators and condi-

tions; they are presented in Table D.9 and Figure 3.7. As can be readily seen, there

is far more individual difference between operators than between texture conditions.

There does appear to be some systenmtic variation in the crossover frequency with

texture type, although it is still small in relation to the individual differences. Gen-

erally, for a particular operator, the highest crossover frequencies were observed with

the Grid texture, and the lowest with the Line texture. The higher crossover fre-

quency implies that the operator is responding over an effectively higher bandwidth

with the Grid texture than the Line texture: this is one likely cause of the improved

performance shown in Figure 3.a. The qualitative difference between the displays is

that the Grid texture has far more available visual cues than the Line texture; the

Parallel and Perpendicular textures have more cues than the Line, but less than the

Grid. The level of redundancy of available cue sources in the different textures could

be responsible for the observed performance effects. Unlike the crossover frequency,

the phase margin does not appear to have any systematic variation with texture

condition a, implying that the stability of the closed-loop system was not affected by

texture type.

The amount of lead developed by the operators, defined by 1�coL, also seemed to

vary as a function of texture. This is shown in Figure 3.9. The Grid and Parallel

textures were associated with the lowest values of COL(most lead generation) for most

operators, and the Line texture had the highest values.

The function Y_, is related to how the operator responds to the relevant longitudinal

aAlthough it does vary sharply and conformally with w_ achieved, i.e.. with the aggressiveness of

the individual operator. See Figure 3.8.
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Most of the operators using the Grid and Parallel textures demonstrate the ability

to generate more lead in their control strategy (incorporate more velocity feedback)

than when using the Perpendicular or Line textures.

position variable z, and by itself, does nothing to determine how visual cues were used.

The operator response to the irrelevant variable 0, modeled by Yol or Yo2. relates to

the visual cue being used. To review, YOl is the visual-cue model based upon one cue

for both motion and position sensing; it, is defined through the previously identified

parameters of Yp, as well as the additional parameter Ko. Yo2 is the visual-cue

model incorporating one cue for motion, and another cue for position. This model is

defined by the parameters of I_,, and the parameters Kc_ (for motion sensing) and A'_

(for position sensing). The parameters of Yp are completely determined through the

spectral density measurement Yp; therefore, the only degrees of freedom remaining to

fit the spectral density measurement I/0 are Ko for tile one-cue model Yo_, and A'3

and K_ for the two-cue model Yog.

The parameters Ko, K 9 and K. r were chosen as described previously and in Ap-

pendix C, to fit the measurement I?0. The fit quality index Jol and parameter Ko, for

all operators and conditions, are contained in Table D.10. Jo2, Jo2/Jol, I£_, and K-y

for all operators and conditions are contained in Table D.11. The identified parame-

ters of Ko, K3 and K- r are shown in Figure 3.10. The theoretical values expected for

the visual cues analyzed in Section 2.5 are also included in this figure. Note that tile
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identified valuesof the parametersgenerally fall within the expectedrangeof values

from the theoretical visual cueanalysis (Table 3.1).

The one-cueand two-cue models are comparedin two ways. The first way is to

determinehowsimilar the parametersof the two-cuemodelare to the parameterof the

one-cuemodel. It was previously noted that the two-cuemodel becomesequivalent

to the one-cuemodel whenthe parametersK_ and K_ are identical to each other, or

when Ks = K-_. Figure 3.11 shows the ratio A_/K_ for all operators and conditions.

In many cases, particularly with the Grid and Parallel textures, operators appear to

be using two cues (since the ratio is well below unity). The operators using the Line

texture, however, appear to be using one cue.

This ratio K3/K.y alone does not conclusively indicate that the operator is using

two cue sources. The one-cue model has one free parameter, while the two-cue model

has two free parameters. A model-fitting procedure will always ':use" a free parameter

when available to achieve the best fit, even though it could be fitting a relatively high-

variance datum. In addition to checking the ratio K_/B2.y, it also is prudent to examine

how much the additional parameter improved the quality of the fit. Figure 3.12 shows

the ratio of the fit-quality parameters J02 and Jol. It is difficult to quantify a number

for this ratio that corresponds to the case when the one-cue strategy is adequate to

describe the data, but some estimates can be made. There are twenty data points

(ten complex measurements) being fit. If we assume that the additional parameter on

average will provide a one-in-twenty improvement to the fit, an average improvement

in the performance index of 5% might be expected. Therefore, if the one-cue model

is adequate, one might still expect that, on average, the ratio of J02/J01 would be

approximately .95. A confidence interval of three times this, or in this case 15%

improvement, might be used to determine when the two-cue model is clearly more

representative. These intervals are included in Figure 3.12; as can be seen, in many

cases, particularly for the Parallel and Grid textures, the ratio is at and below 0.85.

Many other cases fall between the two intervals. While this data does not conclusively

support the two-cue model, there is evidence that the two-cue model is required to

adequately describe several of the cases. The fact that in many cases, the one-cue

model appears to adequately describe the data, does not prove that a one-cue strategy
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Figure 3.10: Identified parameters Ko (left), K_ (middle), and /fv (right) for all

operators and conditions in Experiment 1. K, is the parameter in the one-cue model

that corresponds to the sensitivity of the visual cue used for both position and motion:

refer to Figure 2.6 and Equation 2.42. /t'_ is the parameter in the two-cue model

for the sensitivity of the visual cue used for motion sensing; K_ is the parameter

for the position visual cue. Refer to Figure 2.7 anti Equation 2.43 for the two-

cue model. Dashed lines on the plot (and labeled in the right margin) indicate the

predicted values of these parameters for the potential visual cues examined (refer to

Table 3.1). Examples of the visual cues are shown in Figure 2.11. To review, %s

refers to displacements or motions along the lines of splay, )_h and )_Lxh are horizontal

components of motion or displacement of features (absolute and relative respectively),

and _v and %av are vertical components.
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A_ and K_ are the motion and position visual cue sensitivities, respectively, in the

two-cue model. The two-cue model becomes equivalent to the one-cue model (in

which one visual cue is used for both position and motion sensing) when the ratio

K_/K.y is unity. The data is strongly supportive of the two-cue model, rather than

the one-cue model, when this ratio is well above or below unity, as it is, except for

the pure line texture.
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indicate a better fit. In those instances when the ratio or02/J01 is significantly below

unit3q the two-cue model provides a significantly better fit to the data than the one-

cue model. The dotted line at 0.95 shows the level of improvement in the ratio that

might be expected from chance with the addition of one parameter to the model

(going from one-cue to two-cue); the dashed line at 0.85 shows three t,imes this level.

is being used; it is also possible that the variances prevent discrimination of the two

models. The structural difference between the two models is a lag-lead element in the

vicinity of the lead break frequency coL. This lag-lead network has the form:

LL(s) = s + (A'_/K,q)_c (3.6)
s+OJL

For this data set, the values of U_L are in the range of 0.2 to 1.0 rad/sec: while

the ratio of K_/I{,,/ tends to be in the vicinity of 0.5 to 1.0. This would put the

frequency range in which one would "see" the effects of the lag-lead network to be

in the range of 0.2 to 2.0 rad/sec, with most of the cases falling into the range of

0.5 to 1.0 rad/sec. As was pointed out before, the data in this area tended to have

high variances (see Figure 3.5). Since the fitting procedure as well as the fit quality

index J uses the inverse of variance, the fitting of high-variance data can create a very

modest improvement in Jo__ relative to JOl. Although the fitting procedure identifies

values of K_ and A'_ that are quite different, the improved fit has very little effect on

the fit-quality index due to the high variances of the points that were improved.
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It canbe seenfrom referring to Figure 3.10that the valuesderived for I(_ tended

to be quite close to Ks, rather than being some median value between K_ and K_.

This is a predictable result for two reasons. The first reason is that the majority of

the data points are above the frequency region in which the lag-lead network exerts

it's influence; above this frequency, I(_ is the parameter that determines the fit. Since

more than half of the points are more strongly influenced by I(_, the one-cue fit would

tend to identify values of K_ closer to K_ than K_. The second factor is that the

fit was influenced by the variances; the frequency region above the influence of the

lag-lead network was typified by lower variances than the data within the frequency

region of the lag-lead network. This would also tend to favor identification of values

of Ko that are closer to K_ than K_.

3.3 Discussion

The two objectives of this experiment were: 1) to determine if the operator's strategy

could be modeled with either form of the VCC model, and 2) to determine if mea-

surable differences in the operator strategies would result from manipulation of the

perspective scene elements.

The second objective has been demonstrated with the ANOVA analysis results.

The manipulation of the scene elements produced statistically significant effects on

the control activity (percent of control correlated with pitch disturbance and with

longitudinal disturbance), as well as the position and velocity rms.

The first objective has been partially met; although the models show good corre-

spondence with the data in many cases, it is impossible to determine from this data

set whether the two-cue model is more representative than the one-cue model. In

several cases, the two-cue model is clearly superior, but in the majority of the cases

the improvement in the fit achieved with the two-cue model is not appreciably better

than what would be expected from chance. A factor that could be responsible for the

difficulty in differentiating the acceptability of the models was the high variances as-

sociated with the I20 measurement. This will be addressed in Experiment 2, described

in the next chapter.
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An encouragingresult fi'om the individual modelingwas that the parametersde-

rived for the visual-cuesensitivities(Ko, K:_, It'.r) generally fell into the range expected

from the theoretical analysis of the visual cues. Specifically, many operators achieved

values of K_., and It'a that were close to the predicted value for the cue related to the

line of splay (k,). This would be achieved if the operator were capable of attend-

ing to displacement or motion of a particular feature aloft9 the lines of splay at the

lower, outer corners of the display. Additionally, the values of K_ achieved for many

operators, particularly with the Perpendicular and Line textures, were close to the

expected value if they used the line closest to the operator as a position reference

(,\,_). This lends support to the validity of the modeling approach. It also suggests

the possibility that this methodology could support the identification of particular

visual cues being used for a task. This is feasible because the identified parameters

K_,, K_, and K v can be directly related to the visual cue or cues bein'g used, through

the model of perspective projection and visual cue selection.

The potential for visual cue identification suggested additional changes in Exper-

iment 2. A fundamental characteristic differentiates the Grid and Parallel textures

from the Perpendicular and Line textures. The Grid and Parallel textures have indi-

vidual points (from the grid intersections) that can create arbitrary two-dimensional

motion in the image. They also have lines of splay. It was realized after-the-fact that

this experimental treatment di/t not allow any differentiation between the effects of

lines of splay, and individual points. This is potentially an important factor, since

one of the theoretical visual cues was based on the hypothesis that motion directed

along a line of splay was being detected. Additionally, the identified parameters for

I(_ in several cases were quite close to the theoretical predictions for using this cue

(A_). Experiment 2, then, will be seen to include modifications to allow differentiation

between the contribution of lines of splay and individual points.
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Chapter 4

Experiment 2

The results of Experiment 1 demonstrated that:

1. The input/output characteristics could be accurately represented with either

form of the VCC model (both the one-cue and two-cue).

2. Manipulation of the task variables could produce measurable effects on the

control strategy and performance.

What the experiment failed to demonstrate was which form of VCC model, one-cue or

two-cue, was a superior representation of the task. This failure could be attributed to

high variances in the measurements of one of the transfer functions, I20 (the control

output of the operator due to pitch attitude). Another factor which could not be

discriminated from the Experiment 1 results was the potential effects of lines of splay

in the display versus individual points.

These factors and others were addressed in Experiment 2. Efforts were made to

reduce the measurement variance. Individual points were added to some of the per-

spective scene textures, to differentiate the effects of the lines of splay and individual

points. This experiment also provided an opportunity to rectify some inadvertent er-

rors that had occurred in Experiment 1. The uneven lateral and longitudinal spacing

of the grid lines in Experiment 1 was the result of a coding error; this was corrected

in Experiment 2. Another problem addressed in Experiment 2 was the unequal effect

of the longitudinal and pitch disturbances at the highest frequencies.
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The goal of Experiment 2 was to:

1. Determine which form of the VCC model, the one-cueor two-cue, was most

representativeof the operator's control strategy.

2. Determine what effect, if any, lines of splay in the display have o11the control

strategy.

3. Investigate the potential of the model to provide a methodology for visual cue
identification.

In summary,Experiment 2 duplicated much of the Experiment 1design,with the

changesand modifications describedabove. The results will show that the two-cue
model is necessaryto representthe task for nearly all of the conditions tested. They

will also showthat the presenceof lines of splay havea slight, but statistically signif-

icant, effect on the control activity and the velocity rms. Conditions with the lines

of splay wereassociatedwith control powerwith morecorrelation to the longitudinal

disturbance, and lesscorrelation with the pitch disturbance, than those conditions

without lines of splay. The lines of splay were also associatedwith lower levels of

velocity rms. The model'appearsto provide a preliminary basisfor visual cue identi-

fication; in many casesthe parameters identified in the modelscorrespondedclosely
to the availablevisual cues.

A description of the experimental protocol for Experiment 2 is provided in Sec-

tion 4.1. Section4.2containsthe experimentalresults from both the ANOVA analyses

and the individual modeling, and Section 4.3 containsdiscussionof those results.

4.1 Protocol

4.1.1 Participants

Ten participants were used. They were recruited from a contractor pool at Ames

Research Center. All were male general aviation pilots, with experience ranging from

135 to 1600 total flight hours. The study design required a total of eight participants;
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tile data from two of tile ten participants were not included in the data analysis

of this study. One of these participants wets dropped from analysis because he had

participated in Experiment 1. Another was replaced when he was unable to comply

with the test instructions (this is described further in Section 4.2.2). None of the

eight participants used for the data analysis presented in this chapter participated in

Experiment 1.

4.1.2 Apparatus

A different apparatus was used in Experiment 2 than had been used in Experiment 1.

The sinmlation was hosted on a different computer, a Silicon Graphics Octane. The

Octane offered better update rates and a potential for more complex graphics than

the original host computer. On this new platform, the simulation updated at the

monitor refresh rate of 72 Hz, increased from the previous update rate of 33.3 Hz. A

new joystick was also employed on this apparatus. In Experiment 1. the operators

used a device called a Flybox, which is a device holding not only the joystick, but also

buttons and throttle-type levers. Operators were required to hold the flybox on their

lap in the first experiment. For this experiment, a B&G Systems JF3 3-taxis joystick

was mounted onto the table holding the computer and monitor. This new apparatus

was nmch more comfortable to use than the Experiment 1 apparatus, particularly for

long-duration runs. The joystick inputs were collected at the simulation update rate

of 72 Hz.

A different monitor was used in Experiment 2, but it was the same size and at the

same position relative to the operator. As in Experiment 1, the color monitor had a

21-inch diagonal screen, with resolution of 1024 vertical and 1280 horizontal pixels.

Operators were seated approximately 20 inches from the display. This resulted in

approximately 30 vertical by 37.5 horizontal degrees of visual angle subtended by the

display.

The dynamics of the vehicle were described in Section 2.1. The actual discrete

transfer functions used, as well as the disturbance dynamics, are presented in Sec-

tion E.1 of Appendix E.
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4.1.3 Scene

The textures used in this task are shown in Figure 4.1. The basic four ground texture

types used in Experiment 1 were used in Experiment 2, combined with random place-

ments of dots. The vertical and horizontal grid spacings were set to 0.5 eyeheights

each. The dots were unifornfly distributed, at the same average density of the grid

intersections (i.e. 4 per square eyeheight).

As was done in Experiment 1, the ground plane was linearly shaded from light

to dark from a position directly under 1;he operator to a distance of 15 eyeheights

in front. The dark color was maintained from that location to the horizon. The

graphical rendering was done with no anti-aliasing, and the lines were all one-pixel

wide. The points in the random dot fields were square, 3 pixels on a side. There

was also no depth cueing enabled. Thus, the operator could not get any position

information from the perspective thickening of the lines as they grew closer, or from

changes in contrast due to distance. The dots also did not change in size due to

distance.

Visual-Cue Characteristics

As was done in Experiment 1, the theoretical values of the visual cue parameters

were derived for each texture and dot combination tested. The analysis of visual-cue

characteristics is identical to that done for Experiment 1, described in Section 3.1.3.

Differences relative to the Experiment 1 analysis are as follows:

1. The decreased horizontal spacing of the lines of splay result in slightly lower

obtainable values for )_s in both the Grid and Parallel textures in than Experi-

ment 1.

2. The dots are assumed to be, on average, optimally placed to allow best possible

cueing. This means, for example, that the minimum obtainable value for Ka_

is assumed for all of the conditions with dots (even though in some particular

cases this might not be true due to the random placements)
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Figure 4.1: The eight texture and dot combinations used in Experiment 2. The top

four textures are without dots; the bottom four textures are with dots.
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Texture

Without Dots

Cue Grid Line Para Perp

A_, > 10 10 10 > 10

AA_ 1 1 1 1

Ah 1 -- 1 --

kAh 1 -- 1 --

k_ > 2.6 -- __>2.8 --

With Dots

Grid Line Para Perp

> 10 > 10 > 10 > 10

1 1 1 1

1 1 1 1

1 1 1 1

>2.6 >2.6 >2.6 >2.6

Table 4.1: Values of Ka for proposed visual cues in Experiment 2. These cues are

depicted visually in Figure 2.11.

The obtainable values for each texture and dot combination of the five potential visual

cues is shown in Table 4.1

4.1.4 Task

The task objectives were identical to those of the Experiment 1 task, although the

disturbance characteristics were modified. In order to better standardize task perfor-

mance, written instructions were provided to the participants. The written instruc-

tions are shown in Section E.2 of Appendix E.

4.1.5 Procedure

Each operator participated for a total of three days (compared to one day in Exper-

iment 1). On the first day, the operator received training runs in each of the eight

conditions. If the average of the operators top five scores 1 (of eight) in all conditions

was 1.4 or less, they completed the remaining test protocol which consisted of two

days of data runs. The conditions on each of the days were identical, with the ex-

ception of the randomized phase angles of the disturbance input components and dot

patterns. The data runs were broken into two days to allow an acceptable total time

on task; completing the data runs in one day would have required the operator to

1The score was the summation of the position and velocity rms over the duration of the run.
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Operator Condition

G/-- II/: ±/-- C/: II/-- G/: L/-- ±/:
II/-- G/: g/-- ±/: G/-- II/: _L/-- g/:
±/-- g/: a/-- II/: L/-- ±/: II/-- C/:
El-- ±/: I1/-- G/: ±/-- El: G/-- II/:
C/- II/-- ±/: L/-- II/ C/-- L/- ±/--
II/: G/-- L/: ±/-- G/: II/-- ±/: L/-
Z/: L/-- G/: II/-- L/: ±/--- II/: G/-
L/: _L/-- II/ O/-- ±/: L/--- C/- II/--

Table 4.2: Experiment 2 presentation order by operator. The first character in the

condition (G, II, 2, or L) designates the type of line texture (Grid, Parallel, Perpen-

dicular, or Line). The second character, -- or :, designates whether dots are absent

(--) or present (:).

stay for approximately nine hours.

The experimental protocol consisted of a block of training runs and two blocks

of data runs. The data-run blocks were identical to each other except for the ran-

domized phase angles and dot patterns. In both the training and data blocks, eight

experimental conditions were tested on each of tile eight operators. The conditions

consisted of the four textures (Grid, Parallel, Perpendicular, and Line), each with

dots present or absent.

Each operator was given a different presentation order for the conditions. In the

training block, operators were given eight sequential training runs in each of the eight

conditions, for a total of 64 training runs. IlL the data blocks, the operator was given

one training run and then four data runs for each condition. For each operator, the

order of presentation (shown in Table 4.2) was identical for the training run and both

data runs.

Each data run lasted a total of 4 minutes, 5 seconds. Training runs lasted 60

seconds. Both data and training runs were initiated by the operator by pressing a

trigger switch on the joystick. During the first five seconds, the disturbances rmnped

linearly from zero to full intensity. The simulation proceeded with full-strength dis-

turbances for the remaining time (4 minutes for data runs, 55 seconds for training
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runs). Following this, the operators received feedback after both training and data

runs on their performance; the feedback consisted of a single value derived by sum-

ruing the rms velocity and rms position from the run (expressed in eyeheights/sec

and eyeheights, respectively).

4.1.6 Experiment Design

The design consists of one factorial, 8 x 4 x 2 with repetitions, line textures (Grid,

Parallel, Perpendicular, and Line), and dots (with and without) as factors. The de-

pendent variables included percent control power correlated with pitch disturbance

(P,_o), percent control power correlated with longitudinal disturbance (P_x), rms ve-

locity (RMSe), and rms position error (RMSx).

4.2 Results

4.2.1 Analysis of Variance (ANOVA)

A 4 x 2 (texture x dots) within subjects Analysis of Variance (ANOVA) was con-

ducted. The same variables used in Experiment 1 were considered: P_o, P_x, RMS_,

and RMS_. The results are shown in Figure 4.2, and the statistical significance of each

factor and interaction is summarized in Table 4.3. The results without the dots are

quite similar to those in Experiment 1, as would be expected. With the dots present,

the effect of texture on all of the outcome variables was significantly reduced. The

Grid, Parallel, and Perpendicular textures with the dots all exhibited similar values

of P_, RMSx, and RMSx. Only the Line texture appears to be significantly different,

and even that effect is much less than that observed without the dots. With the dots

present, there appears to be a slight difference in P,_o between textures with lines of

splay (Grid and Parallel) and those without (Line and Perpendicular).

One of the purposes for adding dots to the ground texture patterns in Experi-

ment 2 was to help differentiate the contribution of lines of splay from that of indi-

vidual points. An Analysis of Variance was conducted between two particular texture

conditions; the parallel texture with dots, and the line texture with dots. The results
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dition consisted of the line texture with dots. The effect of the lines of splay on
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variables (velocity rms, control power correlated with 0 disturbance, control power

correlated with x disturbance) were statistically significant.
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Measurement Texture
&o +
Pa_ +

RMS_ +

RMS. +

Factor

Dots Text/Dots Interaction

0 +

+ +

+ 0

+ 0

Table 4.3: Statistical significance for the 4x2 Analysis of Variance (texture x dots)

from Experiment 2. The presence of the dots significantly reduces the effects of

texture, which is clearly observed when the dots are not present. "+" indicates

statistical significance, "0" indicates lack of statistical significance. For this factorial

analysis, none of the effects or interactions had marginal statistical significance.

are shown in Figure 4.3. The only difference between these two conditions is the

presence of the lines of splay. The analysis revealed a significant effect on both Pao

and Pa_: The presence of the lines of splay was associated with higher levels of con-

trol power correlated with the relevant disturbance (Pa,_), and lower levels of control

power correlated with the irrelevant disturbance (Pao). There was also a marginal

effect on the velocity rms, RMS,: It. was slightly lower when the lines of splay" were

present. The effect of lines of splay on the position rms (RMS,) was not statistically

significant. The results are shown in Figure 4.3.

The numerical values for means and standard errors, as well as the values used to

determine statistical significance, are contained in Section E.3 of Appendix E.

4.2.2 Individual Models

Measurements of };'p and ]20 were made using the technique described in [62] and

Appendix B. Each operator completed a total of eight data runs in each condition;

for the transfer-function measurements, the six time histories exhibiting the lowest

velocity and position rms were used. Although a total of ten operators completed the

test protocol, the results of only eight were used for the ANOVA, and are discussed

here. One operator was replaced when he volunteered that he had adopted a new

control strategy midway through the data runs; since this was not consistent with the
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test instructions, his data werenot included in the analysis. Another operator was

replacedbecausehe had participated in Experiment 1. It was initially thought that

someof the participants from Experiment 1 would have to be used,simply because

of a shortage of participants. This proved not to be the case. When it became

feasible to run only naive participants that had not participated in Experiment 1,

this participant was replaced in the data analysis with another, naive, participant.

The data from thesetwo (replaced)participants are not included here.

The parameter identification techniquesusedwere identical to thoseusedon the

Experiment 1 data, describedin Section3.2.2,with the exceptionof the model form

used for Yp. The plots of the measurements and model fits for all operators and

conditions are shown in Figures E.1 through E.64 of Section E.5 in Appendix E. The

simplest form of model Y, found to correspond well with the measurement ]2p was:

(s + a:L) (4.1)z,

The inclusion of the two highest-frequency data points (at approximately 8 and 13

rad/sec) made it necessary to include a second-order term in the denominator, to

represent the neuromuscular dynamics. As can be seen from Table E.8, this term was

typified by values of wN in the range of 5 to 10 rad/sec, with (N varying from 0.3 to

0.7. This representation for Yp, and the previously defined structures for Y01 and Y02

(Equations 2.42 and 2.43, respectively), generally provided good fits to the data. The

measurements 12p and ))0 had considerably lower variances overall than those obtained

in Experiment 1. The standard error estimates for 12p and t20, for all operators and

conditions, are shown in Figures 4.4 and 4.5, respectively. The reduced variances

were probably due to several factors, including 1) increased simulation update rate,

2) pre-screening participants for a minimum level of performance, and 3) spreading

the training and data collection over several days (reducing the effects of fatigue).

As was the case in Experiment 1, the parameter data is quite extensive. It is

presented in it's entirety in Section E.4 of Appendix E. Only a subset of this data will

be presented in figure form within this chapter. First, the parameters identified for Yp

will be discussed. The fit quality index Jp, and parameters Iff and a_L are contained

in Table E.7 in Appendix E. The parameters r, aJN and @ are in Table E.8; the

9O



5

_4

LU

0
to -_

5

_4

_3
UJ

2

m

o
lO -_

5

_4
Z
_3
UJ

_2

0
10 -_

5

_4
I

0 3
uJ
.1o
_2

(fJ

0
10-_

Gnd w/o dots

Y
e

o
100 101

Perpendicular w/o dots

+

_7

10o

Grid w/dots

rl

10 _

+
x

10o

Perpend,cular w/dots

13

100 101

Frequency - rad/sec

5

_4

_3
UJ

2

_4
I

_3

_2

Parallel wlo dots

-'x ..............

x

10-_ 100 101

Lme w/o dots

_t

I

c

+ 0

o
10-_ 10° 10_

Parallel w/dots

.............

10 -_

5

4

a1

1

o

10° 10_

Lmew/dots O On1 I

Q OP2 I
+ Op3 I

0 0_4 I
Op5 I

.............. i OP6 )
_7

Z_ × 0o7 1

,, a_ z_ 0o81
1

x =.
100 10_

Frequency - rad/sec

Figure 4.4: Standard error estimates of _,, as a function of frequency, for all opera-

tors and conditions in E×periment 2. The standard error is related to the standard

deviation for this data by se = a/v/-6 (the measurements are ensemble averages from

six repetitions). The technique used to determine the standard error is described in

Section B.2. A value of 3 dB is commonly used in manual control research as the

cutoff point for the maximum acceptable standard error; a dashed line is shown as a

reference at this 3 dB point. These variances rcpresent a significant improvement

from Experiment 1 (Figure 3.4).
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significant improvement from Experiment 1 (Figure 3.5).
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crossover frequency Wc and phase margin _b,n of the combined function YpYc are shown

in Table E.9.

Overall, the parameters of Yp showed little variat'.ion with texture. As was the

case in Experiment 1, the crossover frequency was somewhat affected by the texture

for particular operators, although the variation between operators was of a greater
I

magnitude. The crossover frequency and phase margin for all operators and conditions

are shown in Figure 4.6. 121Experiment 1, there appea_ced to be some effect of texture

on the crossover frequency. In this experiment, there abpears to be a similar effect for

the conditions without the dots, although the individual differences between operators

is typically greater than the variation within a particular operator. There appears to

be no effect in the cases with the dots. The crossover frequency of the loop indicates
I

the bandwidth of effective response; higher crossover frequencies are associated with

better closed-loop tracking performance (assmning adequate phase margin). The

trends observed in the crossover frequencies are consistent with the ANOVA results

in figure 4.2; the "denser" textures (more potential cues) are associated with both

higher crossover frequencies and lower rms errors. In the textures without the dots,

the texture with the most cues (Grid) has the highest crossover frequency and lowest

rms values; the texture with the least cues (Line) is generally associated with the

lowest crossover frequencies and highest rms values.

In Experiment 1, there appeared to be little variation in phase margin with tex-

ture, which implies that the textures had no effect on the stability of the closed-loop

human/vehicle system. The results of this experiment were quite similar, with the

possible exception of the Line texture without dots. There was a modest increase in

phase margin (5 to 10 degrees) with this condition, relative to the other conditions, for

several of the operators. However, in all conditions, the phase margin was adequate

to provide good closed-loop stability (no values below 20 degrees were observed). The

tendency to increase phase margin in that particular condition could be an attempt

of the operator to account for uncertainty in the visual cues.

I21 Experiment 1, it appeared that the amount of lead the operators were gener-

ating was possibly affected by the texture. The effect is not present in the Experi-

ment 2 results. The lead break frequency col. for all operators and conditions is shown
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Figure 4.6: Crossover frequency and phase margin for all operators and conditions

in Experiment 2. When the dots are not present, the crossover frequency varies as

a function of scene complexity (higher crossover frequencies with the Grid Texture,

lower with the Line texture. When the dots are present, there is little if any effect of

texture on crossover frequency. Phase margins do not appear to vary within operators

as a function of texture, with the exception of the Line texture without dots: This

texture is associated with an increase in phase margin with most of the operators.
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in Figure 4.7. There are at least two possibilities; one is that the effect observed

in Experiment 1 was solely due to chance; without standard error measurements on

the parameters, this is difficult to assess. Another possibility is that the modifica-

tion to the disturbance signal done in Experiment 2 produced a change in strategy

that canceled this effect. One characteristic that has been observed in human oper-

ator modeling is that as the bandwidth of the disturbance signal increases, an effect

known as low-frequency phase droop occurs [28]. When this happens, the phase gen-

erated by the human operator at the low frequencies (generally less than 1 tad/see)

decreases noticeably. The bandwidth of the longitudinal disturbance was effectively

increased in Experiment 2 (relative to Experiment 1) by" increasing the power at the

highest frequencies. This increase in bandwidth of the disturbance is another possible

explanation for the effect disappearing.

Although not shown graphically here, there was essentially no effect on the neuro-

muscular parameters ¢0g and _N as a function of texture. This can easily be verified

by reviewing the data contained in Table E.8.

Now attention will be turned to the identification of parameters to fit the mea-

surement ]J0. The identified parameter I(_ and fit quality index Jot for the one-cue

model, for all operators and conditions, is shown in Table E.10. The parameters h'o,

K_, and fit quality index ,]o2 of the two-cue model, for all operators and conditions,

are shown in Table E.11. The parameters K_, KI3, and K_, for the conditions without

and with dots, are shown in Figures 4.8 and 4.9 respectively.

It was hoped that this experiment would allow a more conclusive determination

of whether the one-cue or two-cue model was more appropriate. As in the previous

experiment, two different comparisons were done to aid this determination. One was

to test the similarities of the model parameters by examining the ratio Kz/K._; values

of this ratio near unity indicate relatively little difference between the one-cue and

two-cue models. This ratio is shown for the conditions without and with dots in

Figures 4.10 and 4.11, respectively.

In nearly all cases, this ratio is well below unity, which would indicate that the

two-cue model is potentially more descriptive of the data. Moreover, with the dots,

this ratio is consistently and significantly below unity, indicating that the two-cue
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In Experiment 1, the Grid and Parallel textures were associated with better lead

generation (lower COL) than the Perpendicular and Line textures. That effect does

not appear in the Experiment 2 results. A likely cause is the increase of the forcing-

function bandwidth between Experiment 1 and Experiment 2.
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Figure 4.8: Identified parameters h'_, (left), /_3 (middle), and t(_ (right) for all op-

erators, in texture conditions wzthout dots in Experiment 2. I(_ is the parameter in

the one-cue model that corresponds to the sensitivity of the visual cue used for both

position and motion; refer to Figure 2.6 and Equation 2.42. K;_ is the parameter in

the two-cue model for the sensitivity of the visual cue used for motion sensing; Kv

is the parameter for the position visual cue. Refer to Figure 2.7 and Equation 2.43

for the two-cue model. Dashed lines on the plot (and labeled in the right margin)

indicate the predicted values of these parameters for the potential visual cues exam-

ined (refer to Table 4.1). Examples of the visual cues are shown in Figure 2.11. To

review, k,_ refers to displacements or motions along the lines of splay, Ah and k,xj, are

horizontal components of motion or displacement of features (absolute and relative

respectively), and Av and AAv are vertical components.
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Figure 4.9: Identified parameters K_ (left), Ko (middle), and K_ (right) for all op-

erators, in texture conditions w,th dots in Experiment 2. Ko is the parmneter in

the one-cue model that corresponds to the sensitivity of the visual cue used for both

position and motion; refer to Figure 2.6 and Equation 2.42. KZ is the parameter in

the two-cue model for the sensitivity of the visual cue used for motion sensing; K_

is the parameter for the position visual cue. Refer to Figure 2.7 and Equation 2.43

for the two-cue model. Dashed lines on the plot (and labeled in the right margin)

indicate the predicted values of these parameters for the potential visual cues exam-

ined (refer to Table 4.1). Examples of the visual cues are shown in Figure 2.11. To

review, ,\_ refers to displacements or motions along the lines of splay, Ah and A_h are

horizontal components of motion or displacement of features (absolute and relative

respectively), and A_ and k/x_ are vertical components.
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when the ratio KZ_/K-, is unity. The data is strongly supportive of the two-cue model,

rather than the one-cue model, when this ratio is well above or below unity, which it

is in all cases here.
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model is particularly descriptiveof this condition. However,this analysisneedsto be

augmentedwith a checkof the fit quality improvement,betweenthe one-cuemodel

and the two-cuemodel,to determine that the differencein parameterswasnot dueto

chancevariations in the data. This is doneby examining the ratio of the fit quality

parametersfor the two-cue and one-cuemodels, specifically ,]o2/Jol. This ratio is

shown in Figure 4.12. In Experiment 1, it was hypothesized that the addition of a

parameter would on average provide a one-in-twenty improvement to the index, based

upon twenty data points. For this case, 24 data points (12 complex measurements) are

being fit, so on average a 1 in 24 improvement (or 4.2%) might be expected. Setting

a threshold of three times this for acceptance of the two-cue model requires a 12.5%

improvement, or a ratio of Jo2/,lol less than 0.875. These two values are included in

Figure 4.12. As can be seen, in nearly all of the cases, the two-cue model provides

a significant improvement in the fit. Two conditions that are notable exceptions are

the Perpendicular and Line textures without the dots: the models for the majority of

the operators in these cases to not meet the "acceptance" threshold for the two-cue

model.

Overall, the models provided extremely good correspondence with the data. Fig-

ure 4.13 shows the magnitude (in dB) of the measurement divided by the model

(f_/Yp and Yo/Yo2) for every operator, condition, and frequency. A common cutoff

value in manual control research for acceptable levels of variance is 3 dB; the number

of points that fit within this 3 dB limit was computed and is displayed on the plot.

For the fit to _,, the five parameters defining the model Yv provided fits within 3 dB

for nearly 98% of the data points. For the fit to 120, the two parameters in the two

cue model Yo2 provided fits within 3 dB for 86% of the data points.

Figure 4.14 shows the phase difference that occurs between the measurements

and model for all operators and conditions. A systematic failure of the model to

accurately represent the phase of the highest frequency component of 120 is apparent.

The clear trend is that the measurement exhibits less phase delay than the model in

nearly every case. Several attempts were made to account for this in the modeling

procedure, including reducing the time delay associated with the Y0 modeling (relative

to the tilne delay in the YR lnodel); none was successful. Because this frequency point
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all cases. The fit improvement using the two-cue model is also unifornfly better in

the conditions with the dots. The dotted line at 0.958 shows the level of improvement

in the ratio that might be expected from chance with the addition of one parameter

to the model (going from one-cue to two-cue); the dashed line at 0.875 shows three

times this level.
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is well above crossover, this error in the model has little effect on the closed-loop

characteristics of the combined operator-vehicle system. Although this is an intriguing

finding, no additional effort was expended to model this observed characteristic.

The range of actual values derived for K z and K_ generally corresponded with

the range of potential values from the visual cue analysis: nominal values from the

analysis are shown in the figures. One interesting difference relative to Experiment 1

is that it appeared that some operators were achieving values closer to the best
l

achievable value of one. Operator 3 achieved values of Ka near unity with the Grid

and Parallel textures without dots, and between unity and 2.6 for all of the textures

with the dots. When this operator was questioned about his strategy, he indicated

that he had in fact used one of these optimal visual cues, Ah. This operator controlled

the lateral displacement of a feature (either a grid intersection or a dot) close to the

edge of the display, deliberately neglecting the vertical motion. This cue would ideally

provide a value of unity for Kf_. It is interesting that he did not achieve this value

for the position cue parameter A_; this is perhaps due to the fact that the operator

indicated that he still occasionally referenced the position of the baseline from the

bottom of the display (A,,), which would yield a value of 10 if used exclusively. This

self-reported strategy is consistent with the identified parameters, if we consider that

the ideal cue Ah was used for primarily for motion sensing, and a combination of A.

and Ah was used for position sensing.

4.3 Discussion

The goals from this experiment were to: 1) determine which form of the VCC model,

the one-cue or two-cue, is most representative of the operator's control strategy,

2) determine what effect, if any, lines of splay in the display have on the control

strategy, and 3) investigate the potential of the model to provide a methodology for

visual cue identification. These goals have been met. The two-cue form of the VCC

model has been shown to accurately characterize the data in a large number of cases:

Reduced measurement variances in the transfer fimctions _, and Y0 made it possible

to differentiate the effects of the models enough to conclusively show the superiority
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of the two-cue form.

The lines of splay have been shown to have a slight, but measurable and statis-

tically significant improvement, on the control activity (Pao, P6x) and the velocity

rms (RMS_). The presence of lines of splay is associated with lower levels of power

in the control correlated with 0, and higher levels correlated with x. Lower levels of

velocity rms were demonstrated when the lines of splay were present. The presence

of the lines of splay apparently provide visual information that helps the operator to

distinguish the effects of pitch from the effects of longitudinal displacement.

This model shows great potential as a methodology for the identification of vi-

sual cues. The identified model parameters (K_ and K_) correspond closely with

the theoretical values for particular visual cues. Specifically, most of the operators

achieved values of /(;3 (the motion cue parameter) that were in the vicinity of the

values expected if they were sensing the motion directed along a line of splay (A_).

One operator, who achieved values for this parameter below that expected for this

cue, indicated that he was using a cue that would provide a lower value of K_ (Ah,

from controlling the lateral position of a feature). And also, notably, this particular

operator's values of K_ increased dramatically when operating in the texture condi-

tions that lacked this particular cue (Perpendicular and Line without dots). Values

of K_, the position cue, did not have as strong a correspondence with a particular

visual cue, but instead tended to rest between the values of two cues. This could

be explained with an attention-sharing strategy between the position of the baseline

(_v) and another more optimal cue that might be difficult to use for absolute position

judgements (such as A_, or displacement oriented along a line of splay).

One more question arose at the completion of this experiment: How, if at all, is

our perception of desired states through a perspective scene different from the case

in which that state is directly displayed? This question was the target of the last

experiment, described in the following chapter.
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Chapter 5

Experiment 3

The objective of performing Experiment 3 was to gain a better understanding of

the differences and similarities between perspective and compensatory displays. A

compensatory display is one in which the error infornmtion is presented directly to

the operator (through, for example, the displacement of an indicator from a null

position).

In the VCC model development contained in Chapter 2, two fundamental differ-

ences were identified between compensatory and perspective displays:

1. The perspective display is (potentially) affected by other vehicle states than the

ones being controlled.

2. The perspective display performs a nonlinear transformation on both the con-

trolled and uncontrolled states, through the process of perspective projection.

In Experiment 3, these differences are compared and controlled. Compensatory

displays were developed in which the actual state (longitudinal position) was directly

displayed. In some conditions, this state went through the same nonlinear transfor-

mation of the perspective-projection process before being displayed. The perspective

display was also compared with and without the pitch disturbance present. In this

way, the effects of these three interacting factors could be examined: perspective

vs compensatory, linear vs nonlinear state transformation, disturbance vs no distur-

bance.
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In someof the compensatorydisplays, a rate bar was incorporated to provide

additional motion cueing to operators. This wasdone to heip offset an anticipated

improvementin motion sensingby the operatorsusing the perspectivedisplay.

The data analysisconsistedof both Analysis of Varianceand individual modeling

of the control activity, aswasdonein the two previousexperiments. Becausea number

of the conditionsdid not havethe pitch disturbancepresent1,_,isualcuemodelingwas

not performed (sincethe model is basedon parametersthat t_t the measurement120,

which is not availablewhen there is no pitch disturbance pre_ent). Only the control

strategy to the relevant state wasmodelled (Yv).
The resultswill showthat:

1. The effectof tile nonlinear transfornlation of the state (_tueto perspectivepro-

jection) is minimal.

. The effect of uncontrolled states on the perspective displays is to reduce perfor-

mance, compared with the compensatory display. The Grid display is associated

with much smaller decrements in performance than the Line display.

. The compensatory displays are associated with better position rms than the

perspective displays; this is likely due to the lack of a null indicator on the

perspective displays.

The rate bar was not associated with any better levels of performance as had been an-

ticipated; the likely reason is that the velocity was not filtered before being displayed.

Had this been done, the compensatory performance might have been substantially

better: one potentially valuable result was unfortunately missed. Even so, we learned

some very valuable things.

A description of the experimental protocol for Experiment 3 is provided in Sec-

tion 5.1. Section 5.2 contains the experimental results from both the Analysis of

Variance and the individual modeling, and Section 5.3 contains discussion of those

results.

_In particular, none of the compensatory display conditions had the pitch disturbance present,

since only longitudinal position was presented.
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5.1 Protocol

5.1.1 Participants

Six participants were used, all of whom had participated in Experiment 2. The

data from two of these participants had not been used for the Analysis of Variance

and individual modeling analysis in Experiment 2. One operator was not included

because he had participated in Experiment 1, and the decision was made to use all

naive participants in Experiment 2 to remove any potential for bias due to previous

experience with the displays. It was believed that this would not be a factor in

Experiment 3 since any training or recency effects should have averaged out between

the operators due to the extensive exposure of all the operators.

The second operator was removed from the Experiment 2 analysis because he

volunteered that tie had changed his strategy midway through the data runs. This

was not believed to be a factor that would prevent his participation in the third

experiment, since the strategy change reported was specifically a visual cue that

would be optimal with the pitch disturt)ance present. Since the disturbance was not

present in the third experiment, it was believed that lie would be a reliable participant

in this experiment.

5.1.2 Apparatus

The test apparatus was identical to that used in Experiment 2, described in Sec-

tion 4.1.2.

5.1.3 Scene

Four new displays were developed, identified as compensatory displays. The compen-

satory display elements are shown in Figure 5.1. The four displays were made from

combining two conditions: 1) with and without rate bar, and 2) linear and non-linear

state scaling. The purpose of the nonlinear scaling in the coinpensatory displays was

to replicate the nonlinear transformation that occurs through perspective projection,

so that the two conditions are the same in that respect. Details of the scaling are
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compensatory displays of Experiment 3. Position error element scaling is on the left:
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full scale deflections of +1. Note that the nonlinear rate bar scaling is a function of

both longitudinal position rate and longitudinal position (x).

presented in Section F.2 of Appendix F; the relationship between the linear and non-

linear scaling is shown in Figure 5.2. The figure on the left shows the linear and

nonlinear scaling of the position error element. The figure on the right shows the

linear and nonlinear scaling of the rate bar, which is also a function of longitudinal

position (labeled "x = ..." in the figure).

The effect of the nonlinear scaling was to replicate the motion of the baseline in

the perspective displays. This scaling produces some interesting artifacts when large

displacements in longitudinal position occur. One such artifact is a virtual "horizon"

formed when the operator moves very far backward from the starting position. In

a perspective scene, if the operator moves a great distance backward, the original

reference point will move eventually to the horizon, and will not appear to move as

the operator moves farther backward. This can be seen in the nonlinear position error

element in Figure 5.2: the position goes to an asymptotic value (corresponding to the

horizon in the perspective projection). The fact that a feature far distant from the

operator will not appear to move regardless of the operator motion can be seen in

the nonlinear rate-bar scaling. As longitudinal position (x) becomes more negative,

meaning the original position is in front of the operator, the rate-bar scaling reduces.
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As the longitudinal displacementincreases,the motion of the rate bar drops to zero

(in the figure,wherex _ -co). This is consistent with a perspective display, in which

the horizon does not appear to move as a function of longitudinal position change.

Two other displays were also tested: the perspective displays with the Grid and

Line textures (without dots) tested in Experiment 2. This made a total of six display

conditions; two perspective, and four compensatory.

5.1.4 Task

The task was similar to Experiment 2, although no pitch disturbance was present.

The task instructions given to participants are shown in Section F.2 of Appendix F.

5.1.5 Procedure

Each operator participated for a total of two days. In this experiment, there was

concern that the compensatory displays would be particularly difficult to use for long

periods of time. The primary purpose of this experiment was to determine if the

ANOVA analysis revealed any differences between the displays, and the secondary

purpose was to examine the operator transfer functions for any changes due to the

experimental manipulations. Since visual cue modeling was not being performed,

it was not necessary to conduct as many long (four minute) data runs. A smaller

number of long data runs was believed to be sufficient to achieve a reliable estimate

of 12p, since in the earlier experiments the variances on the 12p measurements tended

to be much smaller than the variances on Yo. Although a smaller number of long data

runs was believed to be sufficient for transfer function measurement, it was thought

that more data runs might be required to show statistical significance of any observed

effects in the ANOVA analysis. A number of shorter data runs were also incorporated,

with the goal of improving the ANOVA results.

As was done in Experiment 2, written instructions were provided to the operators;

they are shown in Section F.2 of Appendix F. On day one, participants were pro-

vided with eight one-minute familiarization runs in each of the compensatory display

conditions. The feedback was identical to that received in Experiment 2; a sum of
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the velocity and position rms wasdisplayedasa score.The additional familiarization

runswith the compensatorydisplaysweregivento removeanybiasthat the operators

might havedue to additional time alreadyspentusing the perspectivedisplays.

Following the compensatory familiarization runs, the operators were given five

one-minute training runs in each of the six experimental conditions. The order of

presentationvaried with the operator, as shown in Table 5.1. Then a total of 15

one-minutedata runs werecompleted in eachof the conditions. The data runs were

collectedin blocks of five per condition, just as in the previous training runs.

On day two, the participants wereaskedto completea total of four four-minute

data runs in eachof the six conditions, with the sameorder of presentationusedon

the first day. The data runs were grouped in sets of two per condition, with one

one-minute training run before each two data runs.

The six conditions tested, with shortened identifiers, are below:

1. Perspective Grid (G)

2. Perspective Line (L)

3. Compensatory w/o rate bar, linear scaling (C)

4. Compensatory w/rate bar, linear scaling (CR)

5. Compensatory w/o rate bar, nonlinear scaling (C *)

6. Compensatory w/rate bar, nonlinear scaling (CR*)

5.2 Results

5.2.1 Analysis of Variance (ANOVA)

The outcome variables examined were the position rms error (RMS_) and velocity

rms (RMS:,,). Several combinations of factorials were analyzed, including as factors:
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Figure 5.3: Mean velocity rms (left), and mean position rms (right), for all operators,

as a function of display type and disturbance condition in Experiment 3. Standard

error bars are shown. The two perspective displays are the Grid and Line displays.

The four compensatory displays are: linear scale (C), nonlinear scale (C*), linear scale

with rate bar (CR), and nonlinear scale with rate bar (CR*). Items to note are that

the performance is not improved with the rate bar (displays CR and CR*); in fact, the

display with the rate bar and nonlinear scaling (CR*) is associated with the highest

rms of the no-pitch-disturbance conditions. This was due to large excursions on two

trials. The failure of the rate bar to improve performance is likely due to a lack of

filtering of the velocity before displaying. When the pitch disturbance is not present,

the only observable difference between the compensatory displays and perspective

displays that with the perspective display there is a larger position rms; this is likely

due to the lack of an explicit null indicator on the perspective displays. When the pitch

display is present, the performance with the Line perspective display shows much

larger values in both position and velocity rms than with the compensatory display.

With the Grid perspective display, the velocity rms is unaffected by the presence of

the pitch disturbance, but the position rms is larger than with compensatory display',

albeit to a lesser extent than with the Line perspective display. It is expected also

that the performance with compensatory display would be better still with a good

rate display - perhaps substantially so.
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Operator

1

2

3

4

5

6

Condition

CR C* G CR* C L

CR* C L CR C* G

C G CR* C* L CR

C* L CR C G CR*

G CR C* L CR* C

L CR* C G CR C*

Table 5.1: Experiment 3 presentation order by operator. (G) and (L) denote the

perspective Grid and Line conditions. (C) and (CR) denote the Compensatory and

Compensatory with Rate Bar displays, respectively, both with linear error scaling.

(C*) and (CR*) denote the compensatory and compensatory with rate bar displays,

respectively, using nonlinear scaling of the error.

presence or absence of the rate bar, perspective versus compensatory, linear versus

nonlinear scaling, pitch disturbance absent versus present 2.

Overall, the different conditions did not yield any statistically significant differ-

ences from each other. Mean velocity and position rms, tor all operators and displays,

are shown in Figure 5.3. Particular findings to note were that:

1. There was no difference between the compensatory displays using linear and

nonlinear scaling.

2. For the particular (noisy) rate display used, the rate bar did not improve per-

formance 3.

3. When the pitch disturbance was not present:

(a) There was no difference between the Grid and Line perspective displays.

(b) The only significant difference between the perspective and compensatory

2The comparison of the pitch-disturbance-present condition, for the Grid and Line displays, was
done using data fl'om Experiment 2.

:_This result is in direct contradiction of a large body of work in rate augmentation of displays,
and should not be considered to be of any significance, given the noisy character of the rate display,
used. This is addressed further in Section 5.3.
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displays was in position rms, which was higher with the perspective dis-

plays. This is most likely due to the fact that with the perspective displays,

operators need to control position from a remembered position; there is no

null indicator on the display. With the compensatory display, an explicit

null indicator is present, creating improved position rms performance. Ve-

locity rms was not appreciably different between the displays.

4. When the pitch disturbance was present:

(a) The velocity rms using the Grid display was not affected; the Line display

was associated with a large increase in velocity rlns compared to the Line

display without the pitch disturbance.

(b) The position rms was increased with both perspective displays; the Line

display was associated with a much larger increase than the Grid display.

These results presented are based upon analysis of the long data runs collected

in Day 2 of the experiment. The inclusion of the additional short data runs did not

appear to appreciably affect the ANOVA analysis results.

5.2.2 Individual Models

Measurements of _ were made using the technique described in [62] and Appendix B.

All of the four long data runs taken in each condition were used to fornmlate the

measurement. As was noted previously, the visual cue modeling (fitting of models to

1;'0) was not possible with this experiment due to the fact that no pitch disturbance

was present. Therefore, the only individual models that can be examined are the

models fitting to l_'p.

As in Experiment 2, the form of the model Yp that best fit the measurement Yp

was:

Yp + 2C s/ N + 1) (5.1)

The parameters of this model were fit using the modified DTF technique described

in Section C.1 of Appendix C. Because all of the participants had also participated
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Figure 5.4: Crossover frequency and phase margin as a function of pitch disturbance

and texture, for the perspective displays, for all operators in Experiment 3. The

disturbance-present condition is based on data collected during Experiment 2. When

the pitch disturbance was present, the crossover frequency decreased with the major-

ity of operators, on both display types (Grid and Line). The decrease in crossover

frequency, signifying a lower loop gain, is a likely factor in the increased position and

velocity rms observed in Figure 5.3. Phase margin increased for most operators, with

both display types, when the pitch disturbance was present. The increase in phase

margin indicates a tendancy of the operators to be less aggressive, probably due to

the uncertainty introduced with the disturbance.
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in Experiment 2, it is possiblenot only to do comparisonsbetween the displays in

Experiment 3, but alsobetweenconditions in Experiment 2 and 3. In Experiment 2,

all of the experimental conditions weredone with the pitch disturbance present. In

Experiment 3, there was no pitch disturbance. Therefore, it is possible to compare

the effect on the pilot model parameters, with and without the pitch disturbance

present, for the Grid and Line texture displays (these are the only two display/texture

types used in both experiments). The plots of the measurements and model fits for

all conditions and operators discussed in this section are contained in Figure F.1

through F.48 in Section F.4 of Appendix F.

The effect of the disturbance is most easily seen in the crossover frequency and

phase margins, shown in Figure 5.4. With both the Grid and Line textures, the

crossover frequency decreased, and the phase margin increased, for nearly all opera-

tors, when the disturbance was present.

When the pitch disturbance was not present, there was little effect of display type

on the crossover frequency or phase margin. Figure 5.5 shows the identified crossover

frequency and phase margin for all displays and operators for the condition when the

pitch disturbance is not present. As can be seen, the only fairly consistent effect is

that the phase margin increases slightly with the perspective Line display relative

to the other displays. Also, it appears that for some operators, the compensatory

display with the rate bar and linear scaling was associated with somewhat higher

crossover frequencies. The identified model parameters of Yp, as well as the crossover

frequency and phase margin, for all of the conditions in Experiment 3 and the two

conditions used for comparison from Experiment 2, are presented in Section F.3 in

Appendix F.

5.3 Discussion

Two particular differences between compensatory and perspective displays were con-

trolled and compared in this experiment: 1) the effect of disturbances, and 2) the

nonlinear transformation of the state. The second factor, the nonlinear transforma-

tion through perspective projection, did not produce any measurable effect in either
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for all operators in Experiment 3. Pitch disturbance is not present in any of the

conditions. There is minimal variation in these parameters as a flmction of display

type, although the Line display is associated with somewhat higher phase margin and

lower crossover frequency. The compensatory display with rate bar, using nolflinear

scaling, was associated with an increase in phase margin for most operators - this

is consistent with the observation of most operators that the rather noisy rate bar

provided was distracting as opposed to helpful.
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the Analysis of Variance or the individual modeling: There was effectively no dif-

ferencebetweenthe linear and nonlinear compensatorydispiays. This is no doubt

largely becauseoperators werecapableof controlling the stare'to a degreeof accuracy

which kept the transformation in a linear rangea majority of the time.

The effect of disturbance through uncontrolled states,which affect a perspective
I

display but not a compensatory display, was noticeable and adverse. The performance

decrement with the Grid display due to the disturbance was _imch less than with the
I

Line display, but still substantial.

Even when the pitch disturbance was not present, the perspective displays were

associated with higher values of position rms than the compensatory displays: Th_s

is a significant result of the research. The higher position rm_s performance with the

perspective displays is most likely due to the fact that the operators were required to

remember the null position 4 (because of the lack of a fixed reference). This difference

might have been still larger if the compensatory display had also included a well-

filtered (less noisy) rate display.

Indeed, nmch of the previous work in display design and augmentation has shown

that displaying rate information generally aids the operator in performing manual

control tasks [37, 63, 42, 64, 65, 35, 1]. This was not the case in this experiment.

Here, most operators felt that the rate bar they were given either did not help their

performance, or actually hindered it. The lack of observed effect in the Analysis of

Variance supports this subjective opinion. Several operators indicated that is was not

helpflfl, since they could not differentiate between the "bad" velocity occurring from

a disturbance, and the "good" velocity occurring because of an aggressive control

strategy. Another factor that likely made the rate bar difficult to use was the fact

that it was "raw" velocity, with no filtering. Typically, rate elements incorporated in

displays have some degree of filtering before presentation. The lack of filtering led, in

this case, to an extremely active rate bar; in fact, the periodic nature of the highest

frequency component of the disturbance was clearly visible. Since this disturbance

was well above the crossover frequency (13 rad/sec), and therefore well outside of

4Pilots sometimes use references in the vicinity of the windscreen, such Ks a particular rivet, as
a null indicator for the horizon line.
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the ability of the operator to control, it represented a fairly spurious source of data

that could not be effectively incorporated in the control strategy. The rate bar was

initially incorporated to determine if it might offset any improved rate sensing with

the perspective displays. What was learned instead was that the presentation of rate

information cannot be useflflly done without considerable care.

121



Chapter 6

Discussion

Tile results of the Analysis of Variance (ANOVA) in tile three experiments showed

that manipulation of the scene content could produce measurable, statistically signifi-

cant effects on the outcome variables studied. This was considered to be an important

prerequisite to the individual modeling. Tile goal of this work was to develop a visual

cue model that could account for observed effects; the modeling becomes little more

than an academic exercise if the effects being modeled could easily have occurred by

chance.

The two-cue form of the VCC model, validated with tile Experiment 2 data,

has been shown to characterize the data very accurately. The number of model

parameters is very small relative to the number of data points; in Experiment 2,

only five parameters were necessary to accurately model the control response to the

longitudinal disturbance (consisting of 24 data points), Two parameters were required

to characterize the control response to tile pitch disturbance, also fitting 24 data

points. This highly accurate model is based upon the simple hypothesis that tile

operator chooses visual cues in tile image and controls them directly, as opposed

to performing a full reconstruction of the vehicle state. It is a direct validation of

Gibson's ': 'Ground Theory' of Space Perception" [8], particularly two of the five

postulates:

1. There is always some variable in stinmlation (however difficult it may be to

discover and isolate) which corresponds to a property of tile spatial workl.
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2. The stimulus-variable within the retinal image to which a property of visual

spacecorrespondsneedbe only a correlate of that property, not a copy of it.

An interesting characteristic of the model is that: 1) operators appear to derive

motion and position from two different sources 1, and 2) the motion source is asso-

ciated with superior disturbance rejection relative to the position cue. This second

characteristic is potentially important since it might be linked with human percep-

tual capabilities. The human visual motion processing system requires the stimulus

to have certain characteristics before "apparent motion" results, or a perception of

motion. Specific conditions that can make apparent motion disappear are update

rates that are too slow, or too much movement of a feature between updates. Cur-

rent visual flight simulation applications tend to favor highly accurate scene content,

often with the tradeoff of lower update rates. Little attention is paid to whether the

normal scene motion at these update rates can still stinmlate motion detection in the

entire image. Some researchers have proposed modifying visual scene simulation to

take better advantage of human visual motion perception capabilities, potentially at

no computational cost [66, 67]. Nakayama [68] has proposed tuning of the update

rate and scene complexity to be more compatible with visual motion processing ca-

pabilities. High scene complexity is not necessary when the image is moving quickly,

because we are sensitive to only the lowest spatial frequency components when the

temporal frequency is high. However, update rate needs to be high enough to prevent

loss of "apparent motion" which occurs when features move too far spatially between

updates.

It is difficult to generalize these findings to visual cue requirements of fixed-wing

aircraft, because of their requirement for constant forward speed, but some of the

results can be related to helicopter visual cue requirements. Roger Hoh [69] conducted

a study in which he manipulated the available visual cues in helicopter hovering

nmneuvers by limiting both field of view and level of scene detail. This study was

done in actual helicopters using outside visual references. Field of view manipulation

1Grunwald and Merhav [331 also discovered that a two-cue model best represented the ease of
unconstrained viewing in a lateral vehicular control paradigm. The two cues were related to near

and far distances, but in terms of the state information provided, one cue provided more motion
information than the other.
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was done by draping cloth panelswith cutouts in front of the evaluation pilot (a

safety pilot had an unrestricted field of view). The scene detail manipulation was

accomplished through the use of special goggles, which would "fog" the scene and

obscure the fine details (called microtexture) in the environment, without reducing

the ability to perceive outlines of large objects. Some of Hoh's findings are very

consistent with the results of the current experiments. One very interesting finding

was that the pilots felt that the attitude cues were significantly reduced with the

lenses fogged than with the lenses clear. This was counter to the expectations of the

experimenter, since the horizon was clearly visible with the lenses fogged, and the

position of the horizon in the image has a one-to-one correspondence with pitch angle

(neglecting motions related to the lateral degrees of freedom). Hoh states:

"From this data it appears that pilots utilize information in the near

field on an equal level, or even more than the distant horizon for attitude

information in low speed and hover."

He goes on to state that operational ext)erience in flight sinmlators seemed to support

this conclusion, with inadvertently large pitch excursions being reported in sinmlators

(even simulators with good motion fidelity).

This outcome is consistent with the experimental results in this dissertation. In

Experiments 1 and 2, it was found that the presence or absence of scene detail,

through grid intersections or dots, was associated with nmch better rejection of the

pitch motion from the longitudinal motion. The theoretical visual cue analysis also

reveals that the most effective differentiation of pitch from longitudinal motion is from

the near-field cues, specifically the lower outer corners of the display. It is possible

that the very features that enable re3ectzon of pitch could also enable the detectzon

of pitch. In Hoh's study, the lack of cues in the most critical part of the image, from

the lack of nficrotexture, could explain the observed effects.

In Experiment 2, the presence of lines of splay was shown to have a statistically

significant effect on the amount of control activity correlated with the irrelevant dis-

turbance. This is interesting because of the relative lack of motion of the lines of

splay; the angles the lines make (in the image plane remain essentially fixed (pitch
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has a second order effect on this angle). The angle of splay lines has been proposed

and studied numerous times as an altitude cue ([25] is a recent example), but in

the case of changing altitude, the angle of the line correlates with altitude. In this

case, it is possible that these lines provide a fixed reference to help differentiate the

sources of image feature motion; motion directed along a line of splay is correlated

with longitudinal position. This finding could have implications for both sinmlator

visual scene design and airport markings.

We might expect that, through trial and error, that many current practices are

in fact optimal. An interesting example relates to heliport markings. Public-use

heliports have a large "H" on the landing surface [70]. If lines of splay and discrete

points are essential elements in a visual display to differentiate longitudinal and pitch

motions, the letter "H" is probably the best letter in the english alphabet to be used

for heliport marking. It provides lines of splay (from the two vertical elements),

and discrete points (from the intersections of the horizontal element and ends of

the vertical elements). The letters 'T' and "T" would not provide lines of splay,

only a centerline reference. Other letters like "E", "F" and "L" could provide some

references, but the lack of symmetry would probably not be ideal for lateral guidance.

It is doubtful that such markings would affect the hovering performance of an

experienced pilot when numerous visual cues are available (as in the case of clear

visibility and adequate microtexture). Helicopters are routinely hovered without no-

tations or markings on the ground. However, such markings could become more

important in reduced visual conditions when, as simulated in Hoh's study, the mi-

crotexture becomes less visible. The results of Experiment 2 showed that even an

impoverished scene (i.e., the Parallel texture without dots) can be used to achieve

performance that is comparable to a nmch more detailed scene (i.e., the Grids, and all

scenes with dots), provided that the impoverished scene has usable and advantageous

cues available (i.e., As, or motion oriented along a line of splay). Specifically, for the

position control case, that means lines of splay and individual points (or intersections)

at the lower, outer corner of the display or windscreen. The Parallel texture provided

relatively few cues, but they were ideally located to provide accurate detection of

lateral motion. The simple "H" marking on a heliport could provide guidance that is
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optimal for such a simple cueing element.

The results of Experiment 3 comparing perspective scenes with compensatory dis-

plays show that in some ways, operators can achieve performance with a perspective

scene that is similar to what can be achieved with explicit state presentation (velocity

rms). The lack of a null indicator on a perspective scene does degrade position control

relative to conformal display usage. These results should only be generalized to cases

in which the operator is capable of controlling the desired state within a region that

produces quasi-linear motion of the perspective-scene elements. This is a factor under

the control of the designer through choice of the scene content (location of relevant

cues) and imaging geometry (field of view).

The results from Experiment 3 should not be generalized to support the use of

compensatory displays (in lieu of perspective scenes or displays) in all cases where

state measurements are available. This study exanfined only the case in which one

state was being displayed and controlled; it did not address at all the issue of inte-

grating information from different states into one display. There is extensive evidence

that when nmltiple states are being controlled sinmltaneously, the natural integration

that occurs in a perspective scene is superior to most compensatory displays, in spite

of tile coupling of states occurring through perspective projection. Helicopter control

during approach and landing is one example. Helicopters with no stability augmen-

tation (which typically possess unstable open-loop dynamics) are routinely flown and

landed in visual conditions. Studies indicate that augmentation to the control system

is required to accomplish this when only compensatory displays showing attitude and

flight path error are available [65, 71]. Further improvements in performance and

workload occur when additional augmentation is performed on the control system

and/or the display. Typical display augmentation includes the addition of predictor

or flight director elements (which integrate attitude, position, rate and/or acceleration

information).

Tile results of these experiments alone, and the.resulting models, would appear to

be relevant to only this application (or closely related om_s, as in the helicopter exam-

pies given above). However, the visual cue analysis method, and modeling technique
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developedhere, have extremely wide potentials for application. The basicmethod-

ologiescan be applied to any quasi-static control task usinga perspectivescene.

In order to fully apply this methodologywith a wider variety of vehicledynamics,

disturbances,and scenes,a better understandingof what cuesthe operator is capable

of attending to, and in what circumstances,is necessary.In the first two experiments,

there was a particular cue that was available in all of the perspectivescenes:the

vertical distancebetweentile horizonand a feature in the foreground(A_xv).This cue

wouldhaveprovided the bestpossibledisturbancerejection, yet the evidencesuggests

that noneof the operators usedthe cueeffectively. By applying this analysismethod

to a variety of tasksand scenes,an inventory of usableandunusablevisualcuesources

canbedeveloped.A particularly interestingareato examinewouldbethe interference

effects, if any, on visual cue perception with both lateral and longitudinal motions.

Many studies have shownthat in the casewhere the vehicledynamicsare relatively

uncoupled (e.g., when lateral and longitudinal modes of motion are not coupled)

that there is little interference from controlling both axessinmltaneously. It would

be particularly interesting and useflfl to understand the perceptual characteristics

underlying this.

This method hasbeenusedto "identify" particular visualcues,but the identifica-

tion can only be done by processof elimination to someextent: only one parameter

actually specifiesthe cue,and it is possiblethat two different cue sources can share the

same parameter. This was in fact the case with the three :'optimal" cues )_h (lateral

position), A_xh (relative lateral spacing), and A/,_ (relative vertical spacing), which all

had characteristic parameters of unity. The hypothesis that Ap,_ was not being used

by anyone was determined through process of elimination; in the scenes where that

cue was the only one present that would produce a value of unity, nobody achieved

parameter vahms near unity. It is possible that this method could be extended to pro-

vide more definitive identification of cues through injection of additional disturbance

sources. Each degree of freedom has a different effect on the perspective projection

transformations, and the identification of individual parameters for each disturbance

source might be consistent with only a particular cue. However, this approach would

have some fundamental limitations: the current method relies oll spectral separation
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of the disturbances,and it would be difficult to add more than one or two additional

disturbancesourceswith zerocorrelation. However,evenadding oneadditional source

could produce an enormousbenefit.

The results of this effort havesignificmlt implications for a number of topics. We

havecontrol overvisual scenecontent in a numberof manualcontrol applications. In

vehicledesign, we can choosetile sizeand shapeof the windows. Actual scenefea-

turesfor vehiclecontrol arealsoselectableto someextent; runway markingsand lane

markingsare two examplesrelevant to aircraft and autonmbiles. In synthetic scene

generation, wehave somecontrol and choiceover update rate and scenecomplexity,

aswell asdisplay resolution. Designersof remotely-opera.tedsystemsand vehiclescan

havesomecontrol over the display resolution, update rate, dynamic range (number

of grayscalevalues, for example), and field of view. Evaluation of these factors in

the design processhas typically beendone empirically; this methodology offers an

algorithmic approachfor evaluatingthe potential effectsof perspective-scenemanip-

ulation, and validating the results.
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Chapter 7

Contributions and Conclusions

7.1 Summary of Contributions

Tile unique contributions of tile work described in this dissertation were listed in

Section 1.3. Conclusions of the research, relevant to these contributions, are presented

below.

• Development of a simple model which for tile first time accurately characterizes

human manual control through t)erspective scene viewing using a combination

of cues.

Tile two-cue form of tile VCC model developed in this dissertation demonstrates

a high level of ability to match the measured input/output characteristics of humans

performing manual control tasks using perspective displays. The fits to the data are

consistently good with a limited number of parameters. The form of model for Yp (the

operator transfer flmction between position and control output) used in Experiment 2

featured five parameters (K_, r, _L, a_'N, _N), which for each particular condition

(operator x texture) were chosen to fit 24 data points (12 complex mee, surements).

For each of the 64 conditions, this model provided a fit that was within 3 dB of the

measurements with over 97% of the data points.

The extensive body of past work in manual control would predict the results for the

1_;, model fits; the models used were consistent with known characteristics of human
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manual control. What is notable about this new model is the high quality of fit

achieved on 120 (the measured operator transfer function between pitch attitude and

control output). The two-cue model has two free parameters iK_ and K_); the other

parameters of Yv are set based upon the 12v measurement. With the parameters of Yp

having been set with a different measurement (IFp), and the additional two parameters
• I

of the two-cue models, high degrees of fit accuracy were achieved to the 24 data points

in the 120 measurement. Specifically, in Experiment 2, the two i parameters of the two-

cue model provided fits within 3 dB of the measurements for over 84% of the data

points. Thus, this simplified model accurately characterized perspective display usage

in this manual control task.

Most of the textures clearly elicited a two-cue response frown tile lmman operator.

The motion cue response also tended to have reduced disturb:_nce content compared

with the position cue (K_ < K,). If, in fact, this motion-cue response is due to

specialized human motion perception, this leads to predictions that could be made

concerning when the human motion perception would not be excited by the stimuli.

Reductions in update rate, for example, could degrade the human motion-processing

capability to the extent that the performance is no better than the position sensing.

This methodology could help guide visual scene database designers making tradeoffs

between scene complexity and update rate. In cases where scene complexity must

be sacrificed to allow sufficient update rates, it should be possible to identify those

portions of the image in which the benefits of scene detail are minimal.

• Development of more comprehensive knowledge through a more complete data

set, with more statistical power, than the prior art.

The results of Experiment 1 did not allow determination of the most appropriate

model (one-cue versus two-cue) due to high variances. In Experiment 2, efforts to

reduce the amount of measurement variance in the control response to pitch attitude

were successfuh The reduction in variance produced definitive evidence that the

operator was using two different cue sources. In some conditions, the amount oJ

power in the control that was correlated with the pitch attitude disturbance was a,

low as 3%. It is a notable achievement that the measurement variances achieved fc
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this variable were generally below 3 dB, often below 1 dB.

Analysis of Variance (ANOVA) results also confirm that manipulation of task

variables could create measurable differences in the outcome variables. Probabilities

of chance occurence in Experiment 2, on those results found to be statistically sig-

nificant, were typically well below the 5% threshold. TILe consistency of the ANOVA

findings lends additional credibility to the VCC model, since it shows that the task

variables that are predicted to change the input/output relationships of the oper-

ator are producing statistically significant effects on both the characteristics of the

operator output (Pao, Par) and the performance (RMS_, RMS_).

• First detailed understanding through examination of visual cues, of the longi-

tudinal position control task using a perspective scene.

It is apparent that the hovering control of a helicopter-like vehicle, through a perspec-

tive display, can lye strongly affected by the characteristics of the scene. Redundancy

of available cues appears to be important, although it was shown that even a rela-

tively sparse display (the parallel texture) could produce very similar performance to

a richer display (grid, dots), if that sparse display had optinml cues available. The

available cues in this sparse display were limited to tile position of the baseline, and

the intersections of the baseline with tile lines-of-splay. The optimal cues in this dis-

play are likely the presence of discrete points at the lower outer corners of the display,

which allow better differentiation of longitudinal motion (which occurs along lines of

splay) from pitch motion (which is primarily up and down).

• An improved understanding of the differences and sinfilarities between perspec-

tive and compensatory displays.

Two main effects have been considered as differences between the perspective and

compensatory displays. The first effect was the fact that a single state could be

isolated and displayed on a compensatory display, while a perspective display is (typ-

ically) subject to effects from nmltiple states. The second factor is the nonlinear

scaling of states that occur in the perspective display through perspective projection.

These effects were isolated and studied. It appears that:

133



1. With a perspectivedisplay (unlike with a compensatoryone), the coupling of

statescanadverselyaffectperformancebecauseit is (usually) impossibleto find

a visual cue that correlatesperfectly with the desiredstate.

2. The nonlinearscalinghasa minimal effect (giventhat the perturbations remain

small).

3. Lack of a null indicator on a perspectivedisplay,as opposedto a compensatory

display,hasan adverseeffect on performance.

It hasalreadybeennoted that in somecaseswherenmltiple statesarebeingdisplayed

and controlled, that the perspectivedisplay canbe superior to the compensatorydis-

play. That case was not examined in the current work, and these findings (particularly

regarding the superiority of the compensatory display) are not generalizable to these

cases.

• Development of simplified parameter identification procedures.

The large number of operators and conditions necessitated tile development of

streamlined parameter identification procedures. In Experiment 1, this new proce-

dure was used to fit three parameters to 24 measurements 1. In Experiment 2, five

parameters were fit to 64 measurements, and in Experiment 3. five parameters were

fit to 36 measurements. The fact that the resulting models exhibited a high degree of

correspondence with the measurements is a validation of the method's effectiveness.

• Demonstration of a methodology to identify" visual cues used in a manual control

task.

The new modeling and identification technique described herein provides measurable

quantities that can be related to the probability that the operator is using a particular

visual cue. This technique has been used to determine when an optimal visual cue is

not usable for closed-loop control, at least not to the degree of accuracy that could

1The term measurement here describes the transfer function measurement as a function of fre-

quency; in Experiment 1, a single measurement consisted of ten complex values. In Experiments 2
and 3, each measurement consisted of 12 complex values.

134



be theoretically obtainable. This optimal visual cue was the distance, in tile image,

between the horizon line and the line in the foreground; none of the operators was

capable of using this cue, although most of them indicated an awareness that keeping

this distance fixed would be an effective control strategy. In general, the parameters

derived for the motion cue were consistent with a strategy of sensing motion directed

along the lines of splay (_,). The one operator who demonstrated better values of this

parameter than are obtainable with A, indicated verbally that he had used another

cue (horizontal displacement of features in the display) which would account for the

lower values. Further work is required to fully realize the potential of this technique

for identifying visual cues: This will be discussed in the following section.

7.2 Recommendations for Future Work

The work described in this dissertation provides a framework for modeling the use of

perspective displays in manual control tasks. It also provides a potential methodology

for identification of visual cues used in perspective displays. However, much work is

still required to fully realize the potential of the model contained herein. The current

research has shown that the parameters of the VCC model are consistent with par-

ticular visual cues, but definitive identification is impossible because of the existance

of multiple cues with similar parameters. By incorporating one or more additional

disturbance states, it should be possible to create a m_ique mapping between the pa-

rameters and particular visual cues, which would potentially enable definitive visual

cue identification.

First and foremost, the model must be validated in a variety of conditions. The

original Crossover Model consisted of both a parameterized model form, and a set of

adjustment rules of the parameters, which varied as a flmction of the task variables.

The two-cue VCC model developed zn the present research can be likened to and works

closely with the parametemzed model form of the Crossover Model, and the ad3ustment

rules fl'om th_s ezpemment are consistent wzth the available visual cues. A basic set of

adjustment rules based upon the ability of the human to perceive and use particular

cues, and the likely effect of the vehicle degrees of freedom, needs to be developed.
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Task variables that need to be studied include the imaging characteristics (field-

of-view, resolution, update rate), scenecontent, controlled element dynamics, and

forcing functions.

The VCC model currently doesnot incorporate the possibility of either an explic-

itly or implicitly generatedcommandedstate. This would require incorporation of

pursuit models of manual control, and dependingon the situation, potentially even

preview models (ill which the operator seesnot only current commandedstate, but

future commandedstate).

The only degreesof freedomconsideredin this workwerelongitudinal position and

pitch attitude. All of the vehiclestatescouple together in tile processof perspective

projection, but we can easily disambiguatesomeof thesestates visually (roll from

pitch, for example). We needto develop a better understandingof the processby

which wedecouplestatesthat are affecting particular visual cues.

This model did not incorporate any effectsof perceptual thresholds. There are

two factors that could affect a person's choiceof visual cue, one of which has not

beenconsideredhere. It wasassumedthat the operator would, whenpossible,choose
a visual cue with the least "contamination" from tile disturbance state 0. That is

not the same as picking a cue that has the greatest sensitivity to the controlled state.

The potential exists, in the equations of perspective projection, for the location in the

image of maximum sensitivity to the relevant state to be different than the location at

which the lowest amount of "contamination" from other states occurs. Both factors

need to be considered, because the simplistic strategy of choosing a cue for which the

"contamination" is minimized could also result in a cue for which the sensitivity to

the relevant state is unacceptably close to perceptual thresholds.

Another potential area of improvement to this technique is the incorporation of

eye-tracking. Eye-tracking alone cannot determine what information the human op-

erator is using, for at least two reasons. First, the receptor field of the eyes is quite

large (more than 180 degrees field-of-view for binocular viewing), so knowing the fix-

ation point just determines the source of the highest-resolution information. Second,

knowing where the eyes are fixated does not determine what judgment the person is

making (i.e., determining the absolute position of a feature, or the relative distance
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between two features). However, tile eye movements could help to reduce the poten-

tial set of visual cues to be considered, since some might be shown to be outside of

the required resolution range to be usable (due to the filtering that occurs in tile eye).

Another useful benefit of eye-movement nmasurement could be to refine tile two-cue

processing model. Certain types of eye movements are linked with motion perception,

and study of eye movements could help to determine when motion processing is being

optimally stimulated.

Many areas of research and design could benefit from tile analysis methodology

developed here. Training could include learning to attend to and perceive the most

important visual cues for control. Decisions concerning field-of-view (for natural

viewing or camera images) could be influenced by an analysis of tile scene content and

vehicle dynamics. Accident investigations in which loss of visual references is thought

to be a factor could potentially benefit from this analysis technique. Simulator design

can be influenced by determining tradeoffs of factors such as resolution, update rate,

and time delays.

The research described in this disseration provides a flmdamental improvement

in our understanding and modeling of perspective dist)lay usage. While much work

remains to be done, the current results provide a foundation for the development of

new tools for tile design and analysis of perspective scene usage in manual control

tasks.
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Appendix A

Perspective Projection

Transformation

In order to analyze the relationship between vehicle states and image motion, it is

necessary to determine the transformation which occurs between the state of the

vehicle, the location of an object in the world, and the location of the object in thc

image plane.

Figure A.1 defines the geometry of the imaging situation analyzed here. The

perspective projective transform defines the position of an object D in the image

plane, (y,, z,), to be [58]:

100]W YD

z, = 0 0 1 0 ' (A.1)

1 -1/F 0 0 1 W Zo
w

The parameter w is an arbitrary scale factor which is not equal to zero. The value

F is the distance between the center of projection P and the image plane; it would be

related to focal length of a camera. The coordinates XD, YD, ZD are the position of the

feature D relative to the image plane coordinate system, i, j, k. Since the position of D

and the center of projection P are typically expressed relative to another, earth-fixed

coordinate system, a transformation is necessary.

xDi + Yl)J + zDk = Fi - P + D (A.2)
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Figure A.I: Perspective projection transform geometry diagram.
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P and D are the positions of points P and D relative to the coordinate system I, J, K.

The transformation between the two coordinate systems, using Eulerian angles [59],

is:

{'}j =

k

c_cO

-s_cO + c_sOs_

s_s_ + c_sOc_

s_cO -sO

c_cO + s_sOs_ cOs_

-c_s_ +s_sOc_ cOcO

I

(A.3)

The resulting transformation between world displacements P and D to image plane

coordinates (y,, z_) is:

y, = w((Dx - X)(-sqJc(I) + cqJsOsq))

+(Dy - Y)(cqJc(I) + sqJsOs(I)) + (Dz - Z)cOs(I))

z, = w((Dx - X)(sqJsq) + cqJs(-)c_)

+(Dr - Y)(-cqJs_ + s_sOcq)) + (Dz - Z)cOcdP)

-F
W

(Dx - X)c_c@ + (Dy - Y)s_cO - (Dz - Z)s(9

(A.4)

(A.5)

(A.6)
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Appendix B

Transfer Function Measurement

Techniques

B.1 Sum-of-Sines Technique

The Sun>of-Sines (SOS) technique has been used extensively for human operator

transfer function measurement [72]. It is particularly well suited for situations in

which the inputs and/or disturbances are variables under the control of tile experi-

ment designer. The SOS technique calls for inputs and disturbances which are sums

of multiple sine functions, each at a different fundamental frequency and phase. Al-

though the resulting signal has a completely random appearance to a human operator,

the characteristic of the signal lends itself to analysis using frequency based methods.

In Section 2.4, it was stipulated that the disturbance functions u and q were

not correlated. This is done by making each signal from sums of sines of different

fundamental frequencies from each other. The exact composition of these signals used

for the experiments is described flLrther in Sections D.1 and E. 1. Now some practical

guidelines and linfitations of tile SOS technique will be discussed. Specifically, tile

particular elements which must be careflfllv chosen are the sampling interval, the run

length, and the frequencies used to make up the SOS signals.
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B.1.1 Sampling Interval

The sampling interval T limits the bandwidth of the maximum frequency which can be

identified; the bandwidth will be the Nyquist frequency, or 1/2T. For example, with

a sampling interval of 0.03 seconds, the Nyquist frequency is 16.6 Hz. The sampling

frequency needs to be set high enough that it is at least two times above the expected

bandwidth of the system (including disturbances) to be identified; otherwise, the

frequency content of the signal which is above the Nyquist frequency will be aliased

into lower frequencies during processing, producing an erroneous measurement.

B.1.2 Run Length

One requirement for the run length is that it be long enough to allow identification

of the lowest frequency content of the input signal. Common practice in human

modeling is to measure frequencies as low as 0.15 rad/sec; one cycle at this frequency

takes approximately 42 seconds. Another common practice is to allow at least 4 or 5

repetitions of the lowest frequency within a data run; five repetitions of this frequency

requires approximately 210 seconds, or 3.5 minutes.

Another requirement, which is perhaps obvious but should be stated, is that the

run length (time elapsed) should be an integer nmltiple of the sampling interval.

This is usually a natural consequence of digital sinmlation, but is included here for

completeness.

Commonly, the Discrete Fourier Transform is used develop cross spectral density

estimates from the time histories of the state. Although it was not done in this

dissertation, choosing the run length such that the number of samples is a power of

2 will allow great computational advantages in data analysis (much more efficient

algorithms exist for DFT when the length of the sequence is a power of 2).

B.1.3 Frequency Components

The frequency components of the SOS signal should all be multiples of the period

established by the total run length. This is easily accomplished by specifying discrete
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values of frequencies which are available to forln the SOS signal (designated c0k):

2rrk
a:k- , k= 1,2,3,...,T_ (B.1)

where T_ is the data run length in seconds.

McRuer's recommendations [30] for input signals for human operator transfer

function identification arc to pick approximately 12 frequencies, equally spaced loga-

rithmically from approximately 0.15 to 15 rad/sec. Tile magnitndes of the different

frequency components can have noticeable effects on the operator strategy, and nmst

be chosen carefully; a thorough treatment of this subject is beyond tile scope of this

section. More detailed guidelines concerning tile choice of input signals frequencies

and magnitudes can be found in [30].

B.1.4 Minimizing Errors from Nonlinearities

The guidelines noted above would theoretically work fl)r any linear system identifi-

cation, but in fact tile system we are identifying, the human operator, does exhibit

nonlinear characteristics. We can take one additional precaution to assure that these

nonlinearities do not adversely affect accurate modeling of the linear characteristics.

A linear system acting upon a sine wave signal, with a flmdamental frequency of

col, for example, will produce an output which only possesses that fundamental fre-

quency. However, a nonlinear system acting on this signal would produce output not

only at that fundamental frequency (co/), but also at harmonics of the frequency (2co/,

3co/, etc.) [72]. We can minimize the effects of nonlinearities on the measurements

by ensuring that measurements at each frequency are not affected by harmonics from

other frequencies.

This can be prevented by choosing frequency components that are not harnlonics

of each other. This is easily done at the higher frequencies by choosing only prime

numbers for the value of k in Equation B.1. At the very lowest frequencies, this is

not always possible because of the relatively small number of primes, but at these

frequencies, there are no inputs at the frequencies be, low that should be causing

harmonics.
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B.2
^ ^

Estimation of Yp and Yo

In section 2.4.2, equations relating the components of the bne-cue model and the

system state power and cross spectral densities were developed. These equations are

repeated here, originally Equations 2.25 and 2.26:

¢_q 1 YpKo¢Oq + _)rq

Ceq 1- Ceq

(B.2)

(B.3)

These equations are based on the assumption that the input signals u and q are

uncorrelated. Both of these equations include some correlation between the inputs

and the remnant term r. The assumption was further made. i_ Section 2.4.2, that the

correlation between this remnant and the inputs is also zero. While this assumption

is valid in a statistical sense, meaning that the expected value should be zero, it is

unlikely that zero correlation will occur in a particular experimental run.

The potential effect of this noise on model flmction estimates can easily be seen.

The Discrete Fourier Transform (Equation 2.35) coefficients are used to estimate the

cross spectral density measurements (reference Equations 2.31 through 2.34). For a

szngle experimental run, the estimate of the cross spectral density Ca,,/@_,, would be:

¢a,, D(f)U(f)* D(f)

¢_,, X(f)U(f)* X(f)
(B.4)

With a measurement based upon a single experimental run, V(f) has no effect. This

measurement can be shown to have the following relationship with the modeh

D ( f ) Yp Ydu + r

X(f) Y_u +Y¢r
(B.5)

This would be an accurate representation of the model Yp only if the magnitude of

r is small. A common modeling error reported by novice modelers is the unwitting

identification of the inverse plant dynamics when the noise nmgnitude becomes large.

For r >> u, we have:

D(f) r 1

X(f) Y¢r Y_ (B.6)
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Averaging can be used to improve these estimates of cross-spectral densities. Lev-

ison [62] reconnnended averaging tile products of the DFT coefficients before taking

the ratio:

yp D(f)U(f)* (B.7)
X(f)U(f)*

Yo- D(f)Q(f)* (B.8)
O(f)Q(f)*

Tile primary assumption enabling this is that tile processes described by Yp and Ye

are statistically stationary. From these ensmnble averages, Levison also developed

relationships for estimating tlle variances of these estimates. That derivation is pre-

sented here in its entirety. First, it is worthwhile to quickly review the assumptions

made concerning tile characteristics of the remnant. Levison makes tlLe assmnption

that the remnant is a zero-mean Gaussian process whose real and imaginary Fourier

coefficients have zero cross-correlation, zero covariance across frequency and replica-

lion, and equal autocovariances. It is referred to as a "stationary incoherent" process,

implying tile tile renmant power is statistically constant, and the phase is randonfiy

distributed between 0 and 2rr across frequencies and replications.

One is interested in knowing the variance of the estimate of _,. The estimate I_;,,

and tile correct or true value, Yp,,, can be expressed with the following relationship:

= + (B.9)

The term _ represents a measurement error. We are interested in estimating variance

in this measurement, specifically how nmch this estimate varies from the correct value.

The estimate of the variance is [73]:

N,. (IK,^ - Yv, I2) (B.10)0 2
NT. - 1E''_ '

where E(.) is the expected value, or mean of (.), and ArT is the number of samples

used to derive the estimate. To simplify further analysis, tile following definitions are

made:

D' - D(f)V(f)* (B.11)

X' - X(f)V(f)* (B.12)
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Usinga similar notation as was used in Equation B.9, these terms can be broken into

their "true" values and measurement error:

D'= D'o+D'

x'= x'+R'

(B.13)

(B.14)

In these equations, D' o and X' o represent the true values, and/)' and )(' represent the

measurement errors. _'p can be written as:

_.p _ D'o +/3'
X,o + _-; (B.15)

If D' o and X' o are the "true" values, one can also write:

1 + D'/D' o (B.16)
= Go i +

If one assumes that the measurement error )(' is small I relative to X'o, making

f('/X_o << 1, one can approximate this expression as:

])_ = Ypo 1 + (B.17)

The measurement error term e is thus identified as:

-- (B.18)
D'o X'o

By solving Equations B.13 and B.14 for D' and A", and substituting into Equa-

tion B.18, the expression for e becomes:

D' X'
g--

D" X;

The variance of e can then be expressed as:

G N7-i E _ _ D'd

(B.19)

X'o*X'*)) (B.20)

1This is not the same as assuming that the magnitude of the remnant is small. X' is an ensemble

average of nmltiple measurements. The assumption is that the phase of the remnant is uniformly

distributed from 0 to 2rr, which makes the expected value of this measurement error zero. This

assumption becomes more accurate as more measurements are used to form the ensemble average

of X'.

148



The expected value of the terms such as D'D'* can be estimated through ensemble

averaging of the experimentally derived values (remember that D' = D(f)V(f)*).

The expected values of the terms such as D'oD _ should in fact be equivalent to the

expected vahle of D', squared. With these substitutions, one can write:

e¢- N_-1 [(-_-) + (X'X'*) z_e_-_-_ (B.21)

This standard error is a quantity that relates to the standard error of the estimate

of the complex quantity _,. A common method used to examine the characteristics

of frequency donmin transfer functions is to derive two scalar parameters which to-

gether specify the flmction: gain and phase. Levison developed an expression to help

relate the standard error estimate to these two characteristics. Defining A and B to

represent the real and imaginary parts of c, Equation B.9 can be expressed as:

_ = Yv,(I + A + jB) (B.22)

The gain G of this quantity is defined as:

^ ^ , , ^ ^

G = 10Logm(YpY _ ) = 4.34Ln(Y_,Yp )

= Go+G_

(B.23)

(B.24)

where

Go = 10Log_o(Ypo) (B.25)

G¢ = 4.34Ln(1 + 2A + A 2 + B 2) (B.26)

G_ represents the error in the measurement of the the "true" gain, Go. Expressing

the natural logarithm with the series expansion Ln(1 + x) = x - x2/2 + x3/3 - ...,

and dropping powers higher than 2, the expression for G¢ can be written as:

G_ = 4.34(2A + B 2 - A 2) (B.27)

Since A and B are the real and imaginary components of _, and _ is assumed to

have a uniform phase distribution, the expected value of the quantity A 2 - B 2 is zero.

149



Further noting that the expected value of A is half of the expected magnitude-squared

of e, we can obtain for the variance of Go:

o_ = 2(4.34)2o-_ (B.28)

aa = 6.14aE (B.29)

Now the expression for the variance in the phase will be developed.

shift of I)p can be expressed as:

For A, B << 1, this becomes:

The phase

(B.30)

¢c =/9(1 - A + A 2) (B.31)

a_= E(B2(I - A + A2) 2) (B.32)

The expected values of all the terms in the above equation are zero 2 with the exception

of B2; thus

a2=E(B2 )= E(ee )=_aE (B.33)
2

The standard deviation terms derived here, a¢, aa, and ere are representative of

the sample variances, which reflect the trial-to-trial variations expected. However,

we are more interested in knowing the variance in our estimate of the mean values;

this term is known as the standard error. For any of the standard deviation terms

used, the relationship of the standard error (denoted se) to the standard deviation

(denoted a) for N_ samples is [73]:

se = (B.34)

2Because the renmant is assumed to be uniformly distributed in phase between 0 and 2rr, expected
values of any terms containing products of A and B will be zero.
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Appendix C

Model Fitting Technique

C.1 Time History Fit Technique for Yp

Assume that a measurement vector H(w) is available. The free parameters u of a

model Yp(u,w) are sought to mininfize differences between the model and tile mea-

surement. To obtain best fit in the frequency domain, it makes sense to actually

minimize the difference of the ratio from 1, or Y_/H - 1. Selection of parameters u to

accomplish this cannot be (tone analytically; a numerical approach is necessary. How-

ever, a closed-loop, non-numerical approximation can be obtained through discrete

approximation techniques.

As described in [74], a discrete transfer function can be obtained through least-

squares methodology. The discrete transfer function can be transformed to an equiva-

lent frequency domain function through a w-transform [75]. The generalized transfer

function of the form:

e-'*(c,s '' + c,,_lsn-l . .. cls + co)

Yp(s) = d,,s '_ + d,,_ls "-I ... dis + do

can be represented with a discrete transfer fimction:

(c._)

z-P(bl z-1 q- b2z-2... + b_,z-')

Yp(z) = 1 - alz -1 - a2z -2 - ... - a,,z-'" (C.2)

If, for example, the transfer function Yp(z) is meant to represent a transfer function
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6/x, tile correspondingdifferenceequation would be:

5k+1 = 5kal + 5k-lae + ... + 5k-m+la,n + x_-vb_ + xk-p-lb2 +... + x_.-p-nbn (C.3)

Given a measured time history 5(t), x(t), taken at time increments T, a matrix

can be formed to generate a least-squares solution for the discrete transfer function

parameters a_ and b_.

as

a2

5;,..... = 5k I 5k-2 Xk-p-1 Xk-p-2 bl (C.4)

i b2

The parameter vectors a and b can be determined from a least-squares fit of time

history data. The resulting discrete transfer fimction can be converted to a continuous

transfer function via the w-transform:

1 + wT/2
= - (c.5)

1 - wT/2

After substituting this relationship into Equation C.2, the w-plane transfer func-

tion Yp(w) can be used to approximate the s-plane transfer flmction Yp(s). The

quality of the fit can be evaluated through a correlation coefficient, which would have

a value of unity for a perfect model. If A' is the measured output vector, and A is

the modeled output vector, the correlation coefficient R 2 is defined as:

R2= 1-[_--_(Ak- Ak')2]/Y_(Ak) 2 (C.6)

This same technique can be used to find a best fit to the frequency domain mea-

surements H by reconstructing a time history from the frequency measurements.

Given a complex measurement H, taken at frequency aJ, with magnitude A, and

phase 4)_, an input-output time history can be constructed. If the input is assumed

to be

z(t), = sin(a_,t) (C.7)
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The output corresponding to this nleasurement would be

_(t), = Az sin(w,t + ¢,) (c.8)

This pseudo-time-history can then be used to construct a matrix as in Equation C.4

to perform a least-squares solution for the vectors a and b. The term above can be

used to form a fit corresponding to one measurenmnt point; the entire measurement

vector can be fit by concatenating the input-output matrices together, h order to

keep the highest magnitude measurements from influencing the fit disproportionately,

all the components are weighted with the inverse of the measurement amplitude. It

is also possible to weight with the inverse of the variance to put greater emphasis on

fitting the low-frequency points.

The time granularity with which one reconstructs the input-output vectors is not

limited to the time interval upon which the original measurement was based; it is pos-

sible to simulate a smaller sampling interval in order to estimate the time delay more

accurately. However, the size of the matrix to be inverted scales with the inverse of

the sampling interval chosen. For a time vector that spans the measurement interval,

this can be quite large. Another limitation is that it is not equivalent to fitting in the

frequency domain. However, it will come nmch closer to a frequency domain fit than

standard time-domain fitting techniques, and it is an analytical solution as opposed

to numerical.

This technique was used to fit the model paralneters of Y_, to the measurement Yp.

Each measurement was inversely weighted with the nmgnitude of the measurement

and the standard error. For Experiment 1, the time delay r was varied in .01 second

steps to determine the best fit using the correlation coefficient R e. For Experiments 2

and 3, T was varied in increments of 1/72 sec.

C.2 Grid-Search Fit Technique for YOl and

In the case of the fit to the measurement 120, a smaller number of parameters needed

to be fitted, making a numerical technique practical. The performance index J was

used to evaluate the one-cue and two-cue model fits, respectively. If we assume that
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the measured frequency response vector is/2/, and the modeled vector is H, and the

standard error vector is a, the equations defining the performance index J are:

9_

n, - (c.9)
H,

I

J=Z;
_=1

(C.IO)

H,, /2/, and a, denote the ith elements of the vectors H, /2/, and a, respectively.

The model parameters to fit Ho were derived through a grid search technique to

minimize the performance index J.
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Appendix D

Experiment 1 Appendix

D.1 Vehicle Dynamic Simulation

-0.2 0 0

1 0 0

0 0 0
{x}[11ox + 0 0 0

0 0 0 0.033

IL

q

(D.1)

The position x is in units of eyeheights. The angle 0 is expressed in radians. This

state-space equation was converted to discrete form for real-time sinmlation with a

sampling interval of 0.03 seconds, using the first-order hold [75]. TILe resulting discrete

state-space equations were:

{Xk+l }

Xk+l

Ok+ 1

-0.9940

= 0.0299

0

1 xk

0 0k

0.0299

+ 0.00045

0

0.0299 0

0.00045 0

0 .001

ua- (D.2)

qk

The control input of tile operator is 5; the maxinmnL range achievable was from

-4 to 4. The disturbances u and q had the following form as a flmction of time (t):

12 D a,2rrk, ( 2rrk,, t )u(t) = _ 240 cos\ 2-24-0-+ p' (D.a)
z----1

12 Da,2rrk, / 27r/q )q(t) = E 240 c°s_-_-6-t + p' (D.4)
l=l
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x disturbance (u)

i a z

1 .5

2 .5

3 .5

4 .5

5 .5

6 .5

7 .05

8 .05

9 .05

10 .05

11 .05

12 .05

k, a4 (rad/sec)

6 .16

10 .26

15 .39

23 .60

37 .97

59 1.54

101 2.64

127 3.32

149 3.90

179 4.69

311 8.14

521 13.64

0

i a, kz

1 .5 7

2 .5 11

3 .5 16

4 .5 25

5 .5 38

6 .5 61

7 .05 103

8 .05 131

9 .05 151

lO .05 181

11 .05 313

12 .05 523

disturbance (q)

w, (rad/sec)

.18

.28

.42

.65

.99

1.60

2.70

3.43

3.95

4.74

8.19

13.69

Table D.I: Experiment 1 disturbance spectra magnitudes and frequencies.

The actual values of a, k and resulting frequencies (w = 27rk/240) are shown in

Table D.1 for the two disturbance spectra. D was set to a value of .7.

The phase offsets (p,) for each repetition and disturbance (q and u) were precom-

puted with a random number generator, randomly distributed from -rr to rr. These

angles used for each repetition are shown in Table D.2 (u) and D.3 (q).

The design of the disturbance spectra is in accordance with guidelines supplied

in [30] for pilot frequency response identification. Most of the points are logarithmi-

cally spaced between .15 and 15 rad/sec. Two additional points were added in the

range between 1.6 and 4.7 Hz to better capture the response in this region.

D.2 ANOVA results summary

D.2.1 2 x 2 Factorial

In the main body of the report, only figures depicting the means and standard errors

of the dependent measures are presented, with tables summarizing the degree of

statistical significance. The actual values for statistical significance are shown in
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Repetition

z 1 2 3 4 5 6

1 -2.88 2.59 1.78 0.97 0.16 -0.66

2 2.10 0.46 -1.18 -2.83 1.81 0.17

3 0.41 0.34 0.26 0.19 0.11 0.04

4 -1.96 1.15 -2.02 1.09 -2.08 1.03

5 1.57 0.80 0.02 -0.75 -1.53 -2.30

6 -0.93 -1.53 -2.13 -2.72 2.96 2.37

7 -2.31 0.20 2.72 -1.05 1.46 -2.31

8 2.83 0.05 -2.74 0.76 -2.03 1.47

9 0.53 -1.10 -2.74 1.91 0.27 -1.37

10 1.93 2.50 3.07 -2.64 -2.07 -1.50

11 0.77 1.81 2.86 -2.38 -1.34 -0.29

12 -3.10 -0.20 2.70 -0.69 2.21 -1.17

Table D.2: Experiment 1 phase angles p, used t,o define disturbance _t per repetition.

Repetition

z 1 2 3 4 5 6

1 -0.29 -2.14 2.29 0.43 -1.43 3.00

2 -1.03 1.89 -1.46 1.46 -1.90 1.03

3 -3.13 -1.77 -0.42 0.94 2.30 -2.63

4 3.08 0.70 -1.67 2.23 -0.14 -2.52

5 -0.84 3.06 0.68 -1.70 2.21 -0.17

6 0.46 1.84 -3.06 -1.68 -0.30 1.08

7 -2.74 2.31 1.08 -0.15 -1.38 -2.61

8 -2.18 0.19 2.56 -1.36 1.01 -2.91

9 -1.78 2.25 -0.01 -2.27 1.76 -0.50

10 -2.26 -1.90 -1.54 -1.18 -0.81 -0.45

11 -1.82 -1.18 -0.55 0.09 0.72 1.35

12 0.46 1.61 2.76 -2.38 -1.23 -0.09

Table D.3: Experiment 1 phase angles p, used to define disturbance q per repetition.
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Texture Noise
Grid absent
Grid present

Line absent

Line present

P_0

mean SE

1.54 0.19

2.76 0.26

1.78 0.20

9.21 2.15

P_X

mean SE

52.59 3.76

50.00 3.40

49.97 1.92

39.04 3.44

RMS_

mean SE

0.456 0.033

0.490 0.034

0.468 0.033

0.622 0.052

RMSx

mean SE

0.587 0.072

0.603 0.060

0.556 0.098

0.887 0.175

Table D.4: Means and Standard Errors for P_o, P_,_, RMS_ and RMS_ for the 2 x 2

(disturbance x texture) ANOVA in Experiment 1.

Factor

Measurement Pitch disturbance

Pa0

RMSe

RMS_

F(1,5) p
14.54 0.012

16.95 0.009

10.53 0.002

10.53 0.023

Texture

F(1,5) p
9.96 0.025

4.06 O.lOl

5.74 0.062

2.75 0.158

Dist/Text Interaction

F(1,5) p
9.47 0.028

6.07 0.057

9.59 0.027

7.42 0.042

Table D.5: F-test and probabilities for statistical analysis of tile 2 x 2 (disturbance

x texture) ANOVA in Experiment 1.

Table D.5. The numerical values for means mid standard errors for Pao, Pax, RMS_

and RMS_ are shown in Table D.4.

D.2.2 One-way Factorial

The actual values for statistical significance of the one-way ANOVA are shown in

Table D.7. Tile numerical values for means and standard errors for P_o, P&, RMS_

and RMS_ are shown in Table D.6.

158



Texture

Grid

Parallel

Perpendicular

Line

/1960

mean SE

2.76 0.26

3.80 0.66

6.67 1.59

9.21 2.15

P_r

mean SE

50.00 3.40

45.85 4.06

43.02 2.78

39.04 3.44

RMS_

mean SE

O.490 O.O34

0.573 0.042

0.578 O.O29

0.622 0.052

RMS_

mean SE

0.603 0.060

0.783 0.084

0.721 0.079

0.887 0.175

Table D.6: Means and Standard Errors for P5o, P_, RMSr and RMS_, for the one-way

(texture) ANOVA in Experiment 1 .

Measurement Factor

Measurement Texture

F(3,15) p

Pao 9.44 0.001

Pax 3.37 0.047

RMS_. 5.61 0.009

RMS._ 3.50 0.042

Table D.7: F-test and probabilities for statistical analysis of the one-way (texture)

ANOVA ill Experiment 1.
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Condition (Texture)
Obs. 3(G) 4 (L) 5(H) 6(_1_)

1 2.02 1.71 1.88 1.65
2 1.58 1.26 1.22 1.03
3 1.24 1.31 1.28 1.06
4 1.21 1.02 0.98 0.78
5 1.96 1.95 1.90 1.89
6 2.26 2.01 1.96 2.35

Condition (Texture)
3 (G) 4 (L) 5 (11) 6 (±)
19.2 19.3 17.3 33.3

40.6 13.6 7.0 18.9

39.6 20.7 33.1 12.8

77.7 52.2 57.6 15.1

62.1 49.7 37.2 35.7

53.3 33.4 36.0 34.3

r (sec) WL (rad/sec)

Condition (Texture)

Obs. 3 (G) 4 (L) 5 (ll) 6(±)

1 0.48 0.51 0.54 0.48

2 0.51 0.54 0.51 0.48

3 0.51 0.51 0.54 0.60

4 0.45 0.48 0.48 0.45

5 0.51 0.51 0.51 0.51

6 0.45 0.45 0.48 0.45

Condition (Texture)

3 (G) 4 (L) 5(lI) 6(_1_)

0.46 0.47 0.41 0.40

0.27 0.26 0.35 0.40

0.20 0.23 0.26 0.12

0.20 0.18 0.25 0.34

0.26 0.22 0.28 0.32

0.25 0.23 0.25 0.37

Table D.8: Y_ parameters Kp, WL, and 7, and model fit index Jp from Experiment 1.

D.3 Individual Model Parameter Summary

Yp model parameters Kp, COL, T, and fit quality index Jp are presented in Table D.8.

The crossover frequency wc and phase margin Cm of YpYc are in Table D.9. Yol

parameter Ko, and fit quality index Jo] are in Table D.10. Yo2 parameters KZ and

K_, fit quality index Jo2, and the ratio Jo2/Jol are in Table D.11.
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wc (rad/sec) 0-_ (deg)

Condition (Texture)

Obs. 3(G) 4 (L) 5(N) 6(_1_)

1 2.06 1.76 1.91 1.68

2 1.59 1.27 1.25 1.08

3 i.24 1.31 1.29 1.05
4 1.21 1.01 0.99 0.82

5 1.97 1.95 1.91 1.91

6 2.27 2.01 1.97 2.37

Condition (Texture)

3 (G) 4 (L) 5(I1) 6(-1-)

24.6 28.6 23.2 35.7

39.6 47.0 45.9 49.3

52.5 49.3 46.4 57.0

57.9 62.6 58.9 59.5

29.0 30.9 30.2 28.9

28.4 35.6 32.8 23.0

Table D.9: Crossover frequency and phase margin of Y_,Y_ from Experiment 1.

h'O

Condition (Texture)

Obs. 3 (G) 4 (L) 5([[)

1 3.0 4.7 4.9

2 5.6 7.4 10.4

3 3.7 2.9 4.5

4 2.7 3.1 5.5

5 3.2 4.9 8.9

6 2.1 4.0 6.3

6(_1_)
3.5

11.6

7.1

8.0

9.5

7.4

Jol

Condition (Texture)

3(G) 4(L) 5(1[) 6(_L)

19.5 17.9 43.7 27.3
25.5 17.1 14.0 17.8

21.6 16.0 14.0 20.6

33.2 26,1 18.8 14.4

50.1 19.0 28.8 67.5

9.9 8.5 26.4 42.4

Table D.10: Yo, parameter K_, and model fit index ,]ol from Experiment 1.
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Jo2 Jos/ Jol
Condition (Texture) Condition (Texture)

Obs. 3 (G) 4 (L) 5 (11) 6 (±) 3 (G) 4 (L) 5 (11) 6 (±)

1 16.6 13.4 40.7 24.5 0.85 0.75 0.93 0.90

2 22.6 16.8 13.4 15.6 0.89 0.98 0.96 0.88

3 21.6 13.5 13.7 20.6 1.00 0.84 0.98 1.00

4 27.2 25.0 18.2 14.3 0.82 0.96 0.97 1.00

5 28.6 13.9 27.7 67.1 0.57 0.73 0.96 0.99

6 9.9 8.3 22.3 41.9 0.99 0.98 0.85 0.99

IG
Condition (_xture) Condition (_xture)

Obs. 3 (G) 4 (L) 5 (ll) 6(Z) 3(G) 4 (L) 5(11) 6(Z)

1 2.5 3.7 5.1 3.8 4.8 6.9 0.8 1.9

2 4.8 7.2 10.1 12.0 9.6 9.8 12.3 6.9

3 3.7 2.6 4.4 7.1 3.5 6.6 6.0 7.0

4 2.1 3.0 5.6 8.0 5.9 6.0 4.2 8.3

5 2.8 4.5 8.8 9.4 6.8 8.1 10.5 10.0

6 2.1 4.1 5.8 7.5 2.5 2.9 9.5 6.8

Table D.11:Yo2 parameters K_ and Kv, model fit index dos, and model fit ratio

Jos/dox from Experiment 1.
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D.4 Individual Model Fit Plots

The model fits are shown in the following figures (Figures D.1 through D.24).
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Figure D.I: Experiment 1 model fit results for Operator 1, Grid Texture.
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Appendix E

Experiment 2 Appendix

E.1 Vehicle Dynamic Simulation

The position x is in units of eyeheights.

1 0

0 0

0 .1

_t

q

(E.1)

The angle 0 is expressed in radians. This

state-space equation was converted to discrete form for real-time simulation with a

sampling interval of 0.01389 seconds, using the first-order hold [75]. The resulting

discrete state-space equations were:

{x +l/ i099720Xk+l ---- 0.01387 1

_k+ 1

+

il{
0 0 Ok

0.01387 0.01387 0

0.00009636 0.00009636 0

0 0 0.01389

_Zk

qk

(E.2)

The control input of the operator is 5; the maximum range achievable was from

-10 to 10. The disturbances u and q had the following form as a function of time (t):

12 a_2"zki .2_k,

u(t) = _ D 2--_-0--cos( 2-T0-t + p,) (E.3)
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x disturbance (u)

i a i

1 3

2 3

3 3

4 3

5 3

6 3

7 .529

8 .665

9 .708

10 .937

11 1.63

12 2.73

ki wi (rad/sec)

6 .16

10 .26

15 .39

23 .60

37 .97

59 1.54

101 2.64

127 3.32

149 3.90

179 4.69

311 8.14

521 13.64

0

i a_ ki

1 1 7

2 1 11

3 1 16

4 1 25

5 1 38

6 1 61

7 .2 103

8 .2 131

9 .2 151

10 .2 181

11 .2 313

12 .2 523

disturbance (q)

a_i (rad/sec)

'_ .18

.28

.42

, .65

.99

i 1.6o
i 2.70

3.43

3.95

4.74

, 8.19

113.69

Table E.I: Experiment 2 disturbance spectra magnitudes and frequencies.

12 ai27rk_ 27ck_

q(t) = _D_cos(2-_-t +pi) (E.4)
i----1

The actual values of a, k and resulting frequencies (cu = 2_rk/240) are shown in

Table E. 1 for the two disturbance spectra. D was set to a value of. 125.

The phase offsets (p_) for each repetition and disturbance: (q and u) were precom-

puted with a random number generator, randomly distributed from -Tr to 7r. These

angles used for each repetition are shown in Table E.2 (u) and E.3 (q).

The magnitudes of the disturbance components were modified from the Experi-

ment 1 conditions to remedy a problem which was observed. The u disturbance is

transformed into longitudinal position through approximately a double integrator,

and the q dynamics are transformed into pitch attitude through a single integrator.

In the first experiment, this resulted in less than one pixel peak-to-peak displacement

to any of the visual cues due to the longitudinal disturbance at the two highest fre-

quency points. In this experiment, for the last six frequency points (2.6 rad/sec and

above), the magnitude of the u disturbance was made proportional to frequency (as

opposed to constant, as was done in Experiment 1).
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Repetition
i 1 2 3 4 5 6 7 8

1 0.26 -0.55 -1.36 -2.17 -2.99 2.49 1.67 0.86

2 -1.04 -2.68 1.96 0.32 -1.33 -2.97 1.67 0.02

3 -2.73 -2.80 -2.88 -2.95 -3.03 -3.10 3.11 3.03

4 1.18 -1.99 1.12 -2.05 1.06 -2.11 1.01 -2.17

5 -1.57 -2.34 -3.12 2.39 1.61 0.84 0.06 -0.71

6 2.21 1.61 1.01 0.42 -0.18 -0.77 -1.37 -1.96

7 0.83 -2.94 -0.42 2.09 -1.68 0.83 -2.94 -0.42

8 -0.31 -3.10 0.40 -2.38 1.11 -1.67 1.82 -0.96

9 -2.61 2.04 0.40 -1.23 -2.87 1.78 0.14 -1.50

10 -1.22 -0.64 -0.07 0.50 1.07 1.64 2.21 2.78

11 -2.37 -1.33 -0.29 0.76 1.80 2.85 -2.39 -1.35

12 0.04 2.94 -0.44 2.45 -0.93 1.97 -1.42 1.48

Table E.2: Experiment 2 phase angles p_ used to define disturbance u per repetition.

Repetition

i 1 2 3 4 5 6 7 8

1 2.86 1.00 -0.86 -2.71 1.71 -0.14 -2.00 2.43

2 2.11 -1.25 1.68 -1.68 1.24 -2.11 0.81 -2.55

3 0.01 1.37 2.73 -2.20 -0.84 0.51 1.87 -3.06

4 -0.06 -2.44 1.47 -0.91 3.00 0.62 -1.76 2.15

5 2.30 -0.08 -2.46 1.44 -0.94 2.97 0.59 -1.79

6 -2.68 -1.30 0.08 1.46 2.84 -2.06 -0.68 0.70

7 0.40 -0.83 -2.06 2.99 1.76 0.53 -0.70 -1.94

8 0.96 -2.95 -0.58 1.78 -2.13 0.24 2.60 -1.31

9 1.36 -0.90 3.13 0.87 -1.38 2.64 0.39 -1.87

10 0.88 1.24 1.60 1.97 2.33 2.69 3.05 -2.87

11 1.33 1.96 2.59 -3.06 -2.42 -1.79 -1.15 -0.52

12 -2.68 -1.53 -0.39 0.76 1.91 3.06 -2.08 -0.93

Table E.3: Experiment 2 phase angles p_ used to define disturbance q per repetition.
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E.2 Task Instructions

The written instructions provided to participants are shown below. In addition to

the written instructions, on the first day (training) participants were also given a

demonstration of the task with all of the test conditions.

E.2.1 Training Instructions

Perspective Displays for Position Control

Thank you for agreeing to participate in this study. The objective of the

study is to determine what features of a perspective scene are useful for

position control.

You will be asked to perform a task with a variety of perspective displays.

The task will be to maintain your position fixed despite wind disturbances.

The vehicle you are controlling is not an airplane, or a helicopter, or any

real vehicle. It hovers above the ground at a constant altitude, and you

can make it move forward by moving the stick forward, and backward

by moving the stick backward. The vehicle also pitches up and down

randomly, but you cannot control this motion and the pitching does NOT

affect the fore-aft position. The vehicle does not move side-to-side, nor

does it roll or yaw. The only motions it can do are fore-aft, and pitch.

You will be given an opportunity to train on all of the display conditions.

A total of eight one-minute training runs will be given for each of the

eight conditions (a total of 64 training runs). A score will be assigned to

each run which is a combination of your position error and velocity. A

smaller score is better. After each condition, you will be required to take

a four-minute break. You are also encouraged to take breaks of whatever

duration you wish between runs, in order to alleviate the discomfort which

can occur from sitting in a fixed position for a prolonged period of time.

The results of the training sessions will be analyzed to determine if you

meet the criteria for the follow-on experiments.
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E.2.2 Data Run Instructions

Perspective Displays for Position Control

Phase II

Thank you for participating in the second phase of this study. The objec-

tive of the study is to determine what features of a perspective scene are

useful for position control.

The task is identical to the one performed in the training conditions,

but will involve longer run times. You are asked to control position as

accurately as possible. As described below, you are required to take breaks

from the task at particular times. You are also encouraged to take breaks

as frequently as necessary to maintain performance on the task.

This portion of the experiment will require two days to complete. On

each day, you will be asked to perform the position control task with

the same eight displays you encountered in the training conditions. For

each condition, you will receive one one-minute training run, then four

four-minute data runs. A score will be assigned to each run which is a

combination of your position error and velocity. A smaller score is better.

For training scores, your performance relative to your previous training

scores will be shown. For data runs, your performance relative to other

subjects data run scores (if available) will be shown. Training runs can be

visually discriminated from data runs by the color of the ground plane.

Training runs feature a brown ground plane; data runs feature a green

ground plane.

After each condition (one training and four data runs), you will be required

to take a four minute break. You will complete four conditions in the

morning, and four conditions in the afternoon. You will be required to

take a lunch break of at least 30 minutes. The experiment is identical on

both days. The purpose of the repetition is to allow averaging of the data.
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Line (L) absent

Line (L) present

P_0

Mean SE

4.42 1.09

5.81 1.28

6.14 1.23

5.73 1.00

8.81 1.10

6.94 1.47

10.92 .87

7.66 1.39

P6_ RMS_

Mean SE Mean SE'

46.31 4.29 0.667 .()23

46.00 3.42 0.658 .016

40.47 3.16 0.691 .017

4'6.68 3.75 0.653 .018

38.88 2.59 0.706 .020

46.30 3.65 0.656 .015

36.04 2.91 0.744 .018

42.52 3.42 0.683 .021

RMS_

Mean SE

0.511 .049

0.485 .028

0.582 .066

0.514 .035

0.564 .044

0.512 .035

0.702 .066

0.562 .0'70

Table E.4: Means and Standard Errors for Pbe, Pbx, RMS_, and RMSx from the 4 x 2

(texture x dots)ANOVA in Experiment 2.

For a given type of display, use a consistent strategy. Once you have

started the data runs (green ground plane), dont experiment with your

strategy (for example, the aggressiveness of control movements).

E.3 AN OVA results summary

In the main body of the report, only figures depicting the means and standard errors

of the dependent measures are presented, with tables summarizing the degree of

statistical significance. The actual values for statistical significance are shown in

Table E.5. The numerical values for means and standard errors for P_e, P_, RMS_

and RMS_ are shown in Table E.4.
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Factor

Measurement Texture Dots Text/Dots Interaction

F(3,21) p F(I,7) p F(3,21) p

P6e 38.85 < 0.0005 2.14 0.188 6.483 0.003

P_ 10.832 < 0.0005 42.5 <0.0005 4.169 .018

RMSx 11.256 < 0.0005 122.15 < 0.0005 2.10 0.131

0.007 18.651 0.003 2.33 0.103RMS_ 5.368

Table E.5: F-test and probabilities for statistical analysis of the 4 x 2 (texture x

dots) ANOVA in Experiment 2.

Factor

Measurement Splay

F(1,7) p

Pae 12.972 0.009

P_ 8.071 0.025

RMS_ 5.032 0.060

RMS_ 0.749 0.415

Table E.6: F-test and probabilities for statistical analysis of one-way (splay effects)

ANOVA in Experiment 2.
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E.4 Individual Model Parameter Summary

Yp model parameters Kp, _dL, and fit quality index Jp are presented in Table E.7; the

parameters T, _d y and _Y are shown in Table E.8. The crossover frequency _zc and

phase margin ¢m of YpY_ are in Table E.9. Yel parameter K_, and fit quality index

Jel are in Table E.10. Ye2 parameters KZ and K_, and fit quality index Je2 are in

Table E.11. The ratios K_/K_ and Je2/Jel are in Table E.12.
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Obs.
1
2
3
4
5
6
7
8

Without Dots With Dots
G I] ± L G I[ ± L

17.9 23.1 34.8 36.6 28.4 22.4 14.1 28.5

51.2 23.6 18.6 9.4 31.9 44.1 16.0 18.8

11.4 11.2 19.3 14.3 12.3 14.4 21.9 17.0
39.6 28.4 9.3 6.5 32.9 35.0 48.6 40.1

14.7 18.4 39.1 21.9 12.4 17.1 13.5 21.5

18.5 20.5 27.0 55.8 13.0 12.6 39.8 22.3

15.5 11.8 34.5 15.9 17.0 14.9 31.1 19.1

10.0 17.6 12.2 10.5 25.0 8.6 19.3 6.3

K_
Without Dots V_:ith Dots

Obs. G II ± L G tl ± L

i 2.292.24 2.092.23 2.21 2.302.282.09
2 2.04 1.97 1.77 1.67 1.88 1.97 1.85 1.80

3 1.69 1.74 1.70 1.54 1.83 1.59 1.66 1.67

4 2.35 2.37 2.19 2.16 2.39 2.28 2.33 2.38

5 1.78 1.82 1.74 1.57 1.98 1.88 1.80 1.61

6 2.12 2.14 1.88 2.13 2.12 2.02 2.12 2.06

7 1.49 1.55 1.64 1.45 1.64 1.64 1.74 1.76

8 1.74 1.69 1.63 1.45 1.74 1.60 1.77 1.78

WL, rad/sec

Without Dots V_Tith Dots

Obs. G ][ ± L G 1] ± L

1 1.05 1.03 1.21 0.95 0.94 1.14 0.78 1.12

2 0.68 0.69 0.52 0.47 0.69 0.69 0.66 0.65

3 0.46 0.39 0.60 0.32 0.48 0.49 0.46 0.51

4 0.72 0.70 0.58 0.56 0.84 0.74 0.77 0.66

5 0.35 0.25 0.31 0.27 0.36 0.26 0.31 0.35

6 0.47 0.43 0.52 0.53 0.59 0.59 0.38 0.45

7 0.26 0.36 0.36 0.37 0.39 0.32 0.46 0.43

8 0.54 0.50 0.54 0.54 0.54 0.51 0.56 0.60

Table E.7: Yp parameters Kp and COL, and model fit index dp from Experiment 2.

197



Obs.
1
2
3
4

5

6

7

8

T, sec

Without Dots With Dots

G H ± L G H _L L

0.21 0.22 0.2 0.22 0.22 0.21 0.22 0.21
0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24

0.25 0.25 0.24 0.24 0.25 0.24 0.24 0.24

0.22 0.24 0.22 0.24 0.22 0.22 0.22 0.24

0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28

0.24 0.25 0.22 0.22 0.22 0.25 0.24 0.25

0.28 0.26 0.25 0.25 0.25 0.26 0.24 0.24

0.25 0.25 0.26 0.25 0.25 0.25 0.24 0.24

wy, rad/sec
Without Dots With Dots

Obs. G II _i L G I{ ± L

1 9.7 10.0 9.3 9.9 9.2 9.8 9.8 9.2

2 6.0 5.7 5.4 5.5 6.2 6.0 5.7 5.7

3 5.5 5.3 5.9 5.3 5.8 5.8 5.5 5.6

4 8.8 9.6 9.0 9.8 10.2 9.7 9.6 10.2

5 6.4 6.7 6.2 6.2 7.6 6.7 6.9 6.4

6 8.0 7.9 6.3 6.7 7.5 10.7 7.3 8.7

7 4.8 5.0 5.1 4.7 5.2 5.1 5.6 5.8

8 5.4 5.3 5.3 5.1 5.5 5.8 5.7 6.1

CN
Without Dots With Dots

Obs. G II _L L G II _L L

1 0.37 0.47 0.47 0.46 0.37 0.44 0.43 0.46

2 0.54 0.59 0.51 0.52 0.54 0.55 0.53 0.46

3 0.55 0.55 0.54 0.64 0.65 0.54 0.57 0.56

4 0.50 0.58 0.57 0.72 0.52 0.56 0.61 0.61

5 0.43 0.46 0.47 0.37 0.46 0.54 0.51 0.41

6 0.70 0.69 0.61 0.75 0.59 0.73 0.70 0.72

7 0.47 0.47 0.46 0.51 0.46 0.48 0.44 0.47

8 0.39 0.39 0.44 0.37 0.42 0.40 0.38 0.40

Table E.8: Y'p parameters % w_, and IN from Experiment 2.
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Obs.

1

2

3

4

5

6

7

8

Obs.

1

2

3

4

5

6

7

8

a_c, rad/sec i

Without Dots _With Dots

G II ± L G II ± L

2.60 2.50 2.41 2.47 2.49 2.62 2.48 2.39

2.23 2.14 1.93 1.79 2.06 2.15 2.03 2.01

1.80 1.84 1.84 1.58 1.90 i1.70 1.76 1.79

2.54 2.50 2.30 2.21 2.58 .'2.43 2.48 2.49

1.90 1.91 1.84 1.67 2.09 1.94 1.88 1.71

2.16 2.17 1.97 2.14 2.23 2.08 2.15 2.09

1.59 1.67 1.78 1.55 1.78 1.76 1.91 1.90

1.97 1.89 1.82 1.63 1.94 1.76 2.00 1.99

&m, deg

Without Dots With Dots

G II 1 L G II _1_ L

28.1 25.3 23.7 27.3 29.1 24.3 31.4 25.8

21.8 20.5 31.3 36.2 26.5 23.3 26.0 29.5

33.4 33.5 31.8 41.2 28.4 38.0 35.4 34.3

27.9 26.0 33.3 31.0 26.8 '29.1 26.3 27.6

39.3 41.3 39.6 48.6 36.2 37.9 39.6 43.9

30.8 29.9 31.8 25.2 30.1 32.2 31.1 32.3

42.5 39.8 38.6 40.5 38.6 38.3 37.0 38.2

33.2 35.5 32.7 39.6 33.1 39.7 35.5 34.9

Table E.9: Crossover frequency and phase margin of YpYc from Experiment 2.
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Obs.
1
2
3
4

5

6

7

8

Jol

Without Dots With Dots

G JJ ± L G I[ _L L

125.8 79.9 56.7 25.9 71.0 91.2 42.4 55.1

78.4 55.6 47.9 16.6 49.9 25.4 40.7 25.9

22.6 44.3 47.5 11.7 15.2 10.4 12.9 17.1

112.9 70.9 22.7 21.6 55.4 47.5 89.9 43.6

48.4 42.2 42.9 34.8 43.4 28.1 15.9 12.7

95.9 63.0 49.4 52.2 30.4 46.9 39.7 105.0

70.4 38.9 47.0 10.5 13.1 12.2 23.2 35.8

97.4 55.0 54.3 22.7 52.8 68.5 66.8 48.7

Without Dots With Dots

Obs. G II _1_ L G H ± L

1 6.81 7.93 8.33 8.87 6.78 6.93 7.85 7.24
2 4.21 5.92 8.23 6.81 5.42 3.83 5.15 5.94

3 2.27 2.17 6.97 7.13 2.48 2.24 2.34 3.10

4 2.60 3.02 6.04 8.92 3.23 3.51 3.87 3.79

5 3.11 4.81 6.52 8.84 3.69 4.04 4119 5.46

6 3.56 4.67 5.96 7.99 4.06 4.19 4.73 4.87

7 2.98 5.34 4.93 8.50 2.72 3.74 3.42 6.54

8 9.36 8.54 9.60 9.13 9.14 10.11 10.10 9.51

Table E.10: Yel parameter K_: and model fit index 381 from Experiment 2.
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Obs.

1

2

3

4

5

6

7

8

Obs.

1

2

3

4

5

6

7

8

J02

Without Dots With Dots

G 11 _1_ L G 11 _1_ L

43.9 31.5 25.9 22.2 18.7 28.6 13.1 26.8

34.3 22.0 43.5 15.3 38.0 19.4 26.8 24.0

10.9 24.7 20.3 10.2 8.5 4.7 8.3 10.7

101.4 61.0 20.9 19.1 37.9 34.3 74.7 39.0

47.0 17.7 40.6 25.5 22.7 22.4 15.7 11.0 ....

77.7 35.9 48.4 46.3 23.2 16.0 28.3 47.4 "

67.9 20.9 44.7 7.7 9.0 8.2 19.3 10.5

20.4 33.6 40.6 20.6 19.3 13.4 22.1 19.8

K_

Without Dots With Dots

G II ± C G [[ _L_ C

4.83 6.17 7.21 8.39 4.99 4.77 6.26 6.03

3.02 4.57 7.69 6.45 4.82 3.41 4.53 5.71

1.13 1.27 5.71 6.95 2.08 1.68 2.05 2.54

2.15 2.60 5.76 8.38 2.54 3.13 3.51 3.53

2.89 3.80 6.36 8.36 2.97 3.68 4.15 5.20

3.09 3.86 5.78 7.73 3.68 3.17 4.32 3.83

2.80 4.12 4.75 8.22 2.28 3.49 3.21 5.51

7.57 7.59 8.63 8.85 7.75 7.66 8.14 8.33

Without Dots With Dots

Obs. G II ± L G II ± L
1 8.89 9.49 9.45 9.53 9.08 8.68 9.59 8.79 ......

2 5.84 8.69 9.08 7.74 6.60 4.87 7.01 6.74

3 4.83 5.80 9.66 9.07 4.21 3.88 4.17 5.05

4 3.73 4.21 6.67 9.95 4.37 4.68 5.05 4.52

5 4.62 11.94 8.96 14.93 7.72 7.40 4.63 7.64

6 5.99 8.51 6.62 9.28 5.05 6.73 7.08 8.07

7 5.17 9.33 6.45 10.87 4.25 6.42 5.03 10.16

8 14.51 11.37 13.21 10.47 12.75 15.10 14.78 12.82

Table E.11:Y02 parameters K_ and K_, and model fit index Jo2 from Experiment 2.
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Obs.
1
2
3
4
5
6
7
8

42/41 D_tsWithout Dots With
G II ± L G II ± L

0.35 0.39 0.46 0.86 0.26 0.31 0.31 0.49

0.44 0.39 0.91 0.92 0.76 0.76 0:66 0.93

0.48 0.56 0.43 0.87 0.56 0.45 0.:64 0.62

0.90 0.86 0.92 0.88 0.68 0.72 0.i83 0.89

0.97 0.42 0.95 0.73 0.52 0.80 0.,99 0.87

0.81 0.57 0.98 0.89 0.76 0.34 0.71 0.45

0.96 0.54 0.95 0.73 0.68 0.67 0.83 0.29

0.21 0.61 0.75 0.91 0.37 0.20 0.33 0.41

Without Dots With Dots

Obs. G II £ L G ]I _I_ L

1 0.54 0.65 0.76 0.88 0.55 0.55 0.65 0.69

2 0.52 0.53 0.85 0.83 0.73 0.70 0.65 0.85

3 0.23 0.22 0.59 0.77 0.49 0.43 0.49 0.50

4 0.58 0.62 0.86 0.84 0.58 0.67 0:70 0.78

5 0.63 0.32 0.71 0.56 0.38 0.50 0.90 0.68

6 0.52 0.45 0.87 0.83 0.73 0.47 0.61 0.47

7 0.54 0.44 0.74 0.76 0.54 0.54 0.64 0.54

8 0.52 0.67 0.65 0.85 0.61 0.51 0.55 0.65

Table E.12: Model fit index ratio J02/J01, and gain ratio KZ/K, to compare the

one-cue and two-cue model fits from Experiment 2.
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E.5 Individual Model Fit Plots

The model fits are shown in the following figures (Figures E.1 through E.64).
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Figure E.I: Experiment 2 model fit results for Operator 1, Grid Texture w/o dots.
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Figure E.2: Experiment 2 model fit results for Operator 2, Grid Texture w/o dots.

205



Ill
"O

I
O

2O

10

-10

-20

Experiment 2: Operator 3, Grid w/o dots

= 10.9

-0.5 0 0.5 1

Log 10 frequency - racl/sec

I

1.5

1 ---

0 ....

,0-3 "r
2
i

==-4
.C /
0._ 5

--6

--7

_8 ....

-9 I J J
-1 -0.5 1 1.5

I i

0 0.5

Log 10 frequency - rad/sec

Figure E.3: Experiment 2 model fit results for Operator 3, Grid Texture w/o dots.
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Expenment 2: Operator 4, Grid w/o clots
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Figure E.4: Experiment 2 model fit results for Operator 4, Grid Texture w/o dots.
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Figure E.5: Experiment 2 model fit results for Operator 5, Grid Texture w/o dots.
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Figure E.6: Experiment 2 model fit results for Operator 6, Grid Texture w/o dots.
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Figure E.7: Experiment 2 model fit results for Operator 7, Grid Texture w/o dots.
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Figure E.II: Experiment 2 model fit results for Operator 3, Parallel Texture w/o

dots.
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Figure E.12: Experiment 2 model fit results for Operator 4, Parallel Texture w/o

dots.
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Figure E.13: Experiment 2 model fit results for Operator 5, Parallel Texture w/o

dots.
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Figure E.14: Experiment 2 model fit results for Operator 6, Parallel Texture w/o
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Figure E.15: Experiment 2 model fit results for Operator 7, Parallel Texture w/o
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Figure E.16: Experiment 2 model fit results for Operator 8, Parallel Texture w/o

dots.
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Figure E.17: Experiment 2 model fit results for Operator 1, Perpendicular Texture

w/o dots.
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Figure E.19: Experiment 2 model fit results for Operator 3, Perpendicular Texture
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Figure E.21: Experiment 2 model fit results for Operator 5, Perpendicular Texture
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Figure E.22: Experiment 2 model fit results for Operator 6, Perpendicular Texture

w/o dots.
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Figure E.23: Experiment 2 model fit results for Operator 7, Perpendicular Texture

w/o dots.
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Figure E.24: Experiment 2 model fit results for Operator 8, Perpendicular Texture

w/o dots.
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Figure E.25: Experiment 2 model fit results for Operator 1, Line Texture w/o dots.
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Figure E.26: Experiment 2 model fit results for Operator 2, Line Texture w/o dots•
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ZI...... ii ii....i iii

..... ._.._ ......_. . .. ">_ ......
y _=-'" --- _---

_ _ _, Y r/_asured

o _- . _ __. V_rr_eI,Jo=14.3,J, /,_/...,.1;_. - -- -- - ' p ...... p .....
.... _.._ - x Y_,m_a_u_

• t >- / t . i ..... Ye 1 one-cue model, Je 1 = 11.7
Ye 2two-cue model, Je 2 = 10.2

i I I I I

-0.5 0 0.5 1 1.5

Log 10 frequency - rad/sec

m
1D
i 20

o_ 10
:Z

- -10

-2O

-2

_-3
I

_-4

J:::

o.._ 5

-.6

-7

_8 ¸

-9: I I I, [ I

-0.5 0 0.5 1 1.5

Log 10 frequency- rad/sec

Figure E.27: Experiment 2 model fit results for Operator 3, Line Texture w/o dots.
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Figure E.28: Experiment 2 model fit results for Operator 4, Line Texture w/o dots.
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Figure E.29: Experiment 2 model fit results for Operator 5, Line Texture w/o dots.
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Figure E.30: Experiment 2 model fit results for Operator 6, Line Texture w/o dots.
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Figure E.31: Experiment 2 model fit results for Operator 7, Line Texture w/o dots.
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Figure E.32: Experiment 2 model fit results for Operator 8, Line Texture w/o dots.
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Figure E.33: Experiment 2 model fit results for Operator 1, Grid Texture w/dots.

236



5O
Expenment 2: Operator 2, Grid w/'dots

nO
lo

I

40

3O

20

10

o;

-10

-20
-1

x Y,e measured

"Z . . _',;1 one-cue _1, Jel = 49.9

.- -- -- -- . . . _,e2 two_cue model, Je2 = 38.0

I I I I

-0.5 0 0.5 1

Log 10 frequency - tad/see

!

1.5

-1

-2

"o--3

I

==-4
a3

E-_5

-6

-7

-8

-9 I I I I I

-0.5 0 0.5 1 1.5

Log 10 frequency - rad/sec

Figure E.34: Experiment 2 model fit results for Operator 2, Grid Texture w/dots.

237



rn

I

t_

:J
3O

2O

10

-10

-20

Experiment 2: Operator 3, Grid w/dots

• _ O p me sured
- _- - -_-" _ ........ _ _ . YpmOdeI, Jn= 12.3

• . -'_" ._. .L .. . Ye + one-cue model, Je 1 = 15.2

jT _, _,_. Ye 2 two-cue model, Je 2 = 8.5

/ / I "J" I I I I

-0.5 0 0.5 1

Log 10 frequency - rad/sec

1.5

-1

-2

_-3

i

=o-4

0-_ 5

--6

-7

-8

-9

-_. - _m- --_--'¢=--_®ii "-=- - _-- _ " " ' . " ' " "

.... ._ " . . . " i "L "_

I I I I

-0.5 0 0.5 1

Log 10 frequency - rad/sec

i

1.5

Figure E.35: Experiment 2 model fit results for Operator 3, Grid Texture w/dots.
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Figure E.36: Experiment 2 model fit results for Operator 4, Grid Texture w/dots.

239



5O
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Figure E.37: Experiment 2 model fit results for Operator 5, Grid Texture w/dots.
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Experiment 2: Operator 6, Grid w/dots
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Figure E.38: Experiment 2 model fit results for Operator 6, Grid Texture w/dots.
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Figure E.39: Experiment 2 model fit results for Operator 7, Grid Texture w/dots.
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Figure E.40: Experiment 2 model fit results for Operator 8, Grid Texture w/dots.
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Figure E.41: Experiment 2 model fit results for Operator 1, Parallel Texture w/dots.
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Figure E.42: Experiment 2 model fit results for Operator 2, Parallel Texture w/dots.
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Figure E.43: Experiment 2 model fit results for Operator 3, Parallel Texture w/dots.
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Figure E.44: Experiment 2 model fit results for Operator 4, Parallel Texture w/dots.
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Figure E.46: Experiment 2 model fit results for Operator 6, Parallel Texture w/dots.
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Figure E.47: Experiment 2 model fit results for Operator 7, Parallel Texture w/dots.

250



5O

4O

30

m

20
¢)
1o

§ lO

-10

-20

Experiment 2: Operator 8, Parallel w/dots

• =__.-'_-_-= __=_ _'_e,.J=8.6
/ _" --/ x YO measureG

" .... Ye 1 one-cue model, Je 1 = 68.5

" Ye2 two-cue model, Je2 = 13.5

I I I I

-0.5 0 0.5 1

Log 10 frequency - rad/sec

1.5

1 ''

-2

-o-3
2
I

==-4

0-_ 5

-6

-7

°

-9 I I I I I

-1 -0.5 0 0.5 1 1.5

Log 10 frequency - rad/sec

Figure E.48: Experiment 2 model fit results for Operator 8, Parallel Texture w/dots.
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Figure E.50: Experiment 2 model fit results for Operator 2, Perpendicular Texture
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Figure E.51: Experiment 2 model fit results for Operator 3, Perpendicular Texture

w/dots.
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Figure E.52: Experiment 2 model fit results for Operator 4, Perpendicular Texture

w/dots.
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Figure E.54: Experiment 2 model fit results for Operator 6, Perpendicular Texture

w/dots.
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Figure E.55: Experiment 2 model fit results for Operator 7, Perpendicular Texture

w/dots.
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Figure E.56: Experiment 2 model fit results for Operator 8, Perpendicular Texture

w/dots.
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Figure E.57: Experiment 2 model fit results for Operator 1, Line Texture w/dots.
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Figure E.58: Experiment 2 model fit results for Operator 2, Line Texture w/dots.
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Figure E.59: Experiment 2 model fit results for Operator 3, Line Texture w/dots.
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Figure E.60: Experiment 2 model fit results for Operator 4, Line Texture w/dots.
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Figure E.61: Experiment 2 model fit results for Operator 5, Line Texture w/dots.
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Figure E.62: Experiment 2 model fit results for Operator 6, Line Texture w/dots.
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Figure E.63: Experiment 2 model fit results for Operator 7, Line Texture w/dots.
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Figure E.64: Experiment 2 model fit results for Operator 8, Line Texture w/dots.
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Appendix F

Experiment 3 Appendix

F.1 Display Characteristics and Dynamics

The vehicle dynamics were identical to those described in Section E. 1 of Appendix E,

with the exception that the pitch disturbance was set to zero. The Grid and Line

displays were generated through the perspective projection process instantiated in

the hardware of the SGI computer system; however, the process is described by

the Equations A.4 through A.6 in Appendix A. Several checks were made in the

development of the software to assure that the graphical rendering being done in the

computer hardware was consistent with these equations.

The compensatory and compensatory with rate bar (C and CR, respectively)

displays were rendered by making the displacement of the position error element

linearly proportional to the longitudinal position error, and displacement of the rate

bar linearly proportional to the longitudinal velocity. The constant of proportionality

was derived to make the sensitivity of the position error element identical to the

sensitivity of the baseline on the Grid and Line displays.

The relationship between the vertical screen coordinate of the feature located at

(Dx, Dy, Dz), viewed from an operator location of (X, O, Z), is:

-F(Dz-Z)

z_ = (mx - X) (F.1)

The factor F is the focal length of the camera; for the purposes of this experiment,
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it can be chosento scalethe imagecoordinatesto someuseful system. This will be

donelater in the derivation.

For the perspectivedisplays (Grid and Line), with the featurebeing the baseline,

located at Dx = DBL and Dz = 0, viewed from the longitudinal position X and a

constant altitude Z = 1, the equation for zi becomes:

Perspective Scaling (G and L): z{ =
F

(DBL -- X)
(F.2)

What we are trying to control between the compensatory and perspective displays is

the sensitivity of the error element; therefore, we want to keep the derivative with

respect to the position error fixed. For the perspective display, this is:

dzi x=o- -4 (F.3)DSL

We want to display the error in the compensatory displays such that this sensitivity

will be the same. It can be shown that this can be accomplished by rendering the

error element in the scene at a longitudinal distance of Dx = D2BL eyeheights, with

the altitude term as follows:

Linear Scaling (C and CR):

Nonlinear Scaling (C* and CR*):

Dz = X (F.4)

[ 1 1 ](F.5)Dz = --FD2BL (DBL -- X) DBL

Substituting these terms into Equation F. 1 will yield:

Linear Scaling: zi

Nonlinear Scaling: z,

X

(D_L)

1
-- F

(DsL- x) DBL

(F.6)

(F.7)

Differentiating with respect to X will yield:

Linear Scaling (C and CR):

Nonlinear Scaling (C* and CR*):

dX x=o

dX x=o

F

D2BL

F

D_L

(F.8)

(F.9)
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Thus, the sensitivity of all display elementsat the nominal condition of X = 0 is

identical.

While it made sense to scale the sensitivity of the position error element in this

way, there was no similar justification to be made concerning the scaling of the rate

bar element. Without any specific quantifiable term which was being matched, the

only guidelines for scaling the rate bar were to make sure that it was easily above

threshold, but not going outside of the field of view.

bar was:

Linear Scaling (CR):

Nonlinear Scaling (CR*):

The scaling used for the rate

Dz = X (F.10)

2
Dz = D2BL (F.11)

(DsL - X) 2

These terms are difficult to understand without putting them in the context of

the display. For this experiment, the vertical field of view was 60 degrees, and the

number of pixels in the vertical direction is 1024. We can choose the focal length to

make the scaling of the image coordinate z, correspond to pixels. For this case, the

focal length will be:

F- (1024/2) -- 886.81 pixels/eyeheight (F. 12)
tan(30 deg)

With this focal length definition, we can now investigate the sensitivity of both

the error terms and the rate bar in pixels per unit of eyeheight motion.

For the position error term:

dz_ -F

dX D2BL

For the rate bar term:

= 98.5 pixels/eyeheight (F.13)

dz i -- f

- - = 98.5 pixels/eyeheight/sec (F.14)
d-_ D_L

To better put this in context, means and standard errors of rms position and

velocity values from Experiment 2 are shown in table E.4 in Appendix E. From the

tables, it can be seen that the rms values of both position and velocity tend to be less

than .8 eyeheights for position, and .7 eyeheights/sec for velocity. With the scaling

shown, and with a total pixel height of 1024 pixels, this would yield less than 100

pixels rms for the error symbols, or less than 10% of the display.
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F.2 Task Instructions

The written instructions provided to participants are shown below. In addition to

the written instructions, on the first day (training) participants were also given a

demonstration of the task with all of the test conditions.

F.2.1 Day 1 Instructions

Perspective and Compensatory Displays Comparison: Part 1

Expected completion time: 5.5 hours

Thank you for agreeing to participate in this study. The objective of the

study is to compare perspective displays (in which a view of the outside

world is rendered) with compensatory displays (in which measurements

such as position and velocity are explicitly presented). A total of six

display conditions will be evaluated; two of the displays were present in

the previous experiment.

You will be asked to perform a task using both perspective and compen-

satory displays. The task will be to maintain a fixed position despite

wind disturbances. The vehicle you are controlling is not an airplane, or

a helicopter, or any real vehicle. It hovers above the ground at a constant

altitude, and you can make it move forward by moving the stick forward,

and backward by moving the stick backward. The vehicle does not move

up-down or side-to-side, nor does it roll, pitch, or yaw. The only motion

it can do is fore-aft.

You will be given an opportunity to train on all of the display conditions.

You will be given additional training time on the compensatory displays,

since they were not present in the previous experiment in which you par-

ticipated. First, you will receive eight one-minute training runs with each

of the four compensatory displays. Next, you will receive five one-minute

training runs with each of the six displays. Then you will complete five
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one-minutedata runs on eachof the six displays. Thesedata runs will be

repeatedtwo more times, for atotal of fifteen data runs in eachof the six
conditions.

A scorewill beassignedto eachrun which isa combinationof your position

error and velocity. A smaller score is better. For training runs, your

performance relative to your previous training scores will be shown. For

data runs, your performance relative to other subjects data run scores (if

available) will be shown. Training runs can be visually discriminated from

data runs by the color of the ground plane or background. Training runs

feature a brown ground plane or background; data runs feature a green

ground plane or background.

During the initial training runs with the compensatory displays, you will

be required to take a four minute break between conditions (after eight

training runs). After that, at the end of every block of five runs, you will

be required to take a two minute break. At the end of every 30 runs,

you will be required to take five minute break. You are also encouraged

to take breaks of whatever duration you wish between runs, in order to

alleviate the discomfort which can occur from sitting in a fixed position

for a prolonged period of time.

For a given type of display, use a consistent strategy. Once you have

started the data runs (green ground plane/background), don't experiment

with your strategy (for example, the aggressiveness of control movements).

F.2.2 Day 2 Instructions

Perspective and Compensatory Displays Comparison: Part 2

Expected completion time: 3.5 hours

Thank you for continuing your participation in this study.
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The task is identical to the one performed in part one, but will require

longer data run times. The task is to maintain a fixed position fixed

despite wind disturbances. The vehicle yo u are controlling is not an air-

plane, or a helicopter, or any real vehicle. It hovers above the ground at a

constant altitude, and you can make it move forward by moving the stick

forward, and backward by moving the stick backward. The vehicle does

not move up-down or side-to-side, nor does it roll, pitch, or yaw. The only

motion it can do is fore-aft.

You will be performing four-minute data runs, as opposed to one-minute

data runs. For each display condition, you will receive one one-minute

training run, and two four-minute data runs. After completing this for

all six display conditions, you will repeat this sequence. The purpose of

the repetition is to allow averaging of data. A score will be assigned to

each run which is a combination of your position error and velocity. A

smaller score is better. For training runs, your performance relative to

your previous training scores will be shown. For data runs, your per-

formance relative to other subjects data run scores (if available) will be

shown. Training runs can be visually discriminated from data runs by the

color of the ground plane or background. Training runs feature a brown

ground plane or background; data runs feature a green ground plane or

background.

After each condition (one training and two data runs), you will be required

to take a four minute break. After a total of 18 runs (between repetitions

of the entire data set), you will be required to take a 20 minute break. You

are also encouraged to take breaks as frequently as necessary to maintain

performance on the task.

For a given type of display, use a consistent strategy. Once you have

started the data runs (green ground plane or background), dont experi-

ment with your strategy (for example, the aggressiveness of control move-

ments).
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F.3 Individual Model Parameter Summary

Some of the parameters presented in this section were derived from experimental data

obtained during Experiment 2. The first two columns represent data taken with the

Grid (G) and Line (L) perspective displays with the pitch disturbance present. The

last six columns are the six displays evaluated in Experiment 3 without the pitch

disturbance present.

Yv model parameters Kv, _L, and fit quality index J; are presented in Table F. 1;

the parameters 7-, _d N and Cg are shown in Table F.2. The crossover frequency _c

and phase margin ¢m of YvY_ are in Table F,3.
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p

With 0 Without 0

Obs. G L G L C CR

1 17.9 36.6 47.9 56.3 70.6 48.0

2 18.5 55.8 117.1 65.2 37.9 59.4

3 11.4 14.3 39.2 33.5 121.0 44.8

4 39.6 6.5 15.9 34.3 14.6 11.7

5 48.2 33.6 90.8 55.8 121.8 72.6

6 45.7 7.4 40.3 29.4 32.4 29.5

gp
With 0

Obs. G L G

1 2.29 2.23 2.40

2 2.12 2.13 2.32

3 1.69 1.54 2.08

4 2.35 2.16 2.41

5 2.21 1.68 2.29

6 1.21 1.63 1.71

With 0

Obs. G L G

1 1.05 0.95 0.90

2 0.47 0.53 0.58

3 0.46 0.32 0.68

4 0.72 0.56 0.83

5 0.74 0.33 0.96

6 0.36 0.41 0.54

_* CR*

§5.9 226.3
25.3 14.1

55.8 23.4

25.6 38.9

77.5 57.6

27.3 24.3

Without

L C CR C* CR*

2.16 2.39 2.68 2.47 2.44

2.24 2.06 2.34 2.27 2.22

1.98 2.09 2.11 2.13 2.00

2.41 2.18 2.36 2.38 2.36

2.37 2.27 2.52 2.34 2.36

1.62 1.83 1.80 1.86 1.69

WL, rad/sec

Without 0

L C CR C* CR*

0.72 1.06 0.88 0.93 0.79

0.69 1.05 0.87 0.78 0.80

0.71 0.83 0.82 0.85 0.85

0.75 0.99 1.06 0.73 0.36

0.68 1.12 0.70 1.00 0.94

0.61 0.60 0.54 0.57 0.69

Table F.I: Yp parameters Kp and WL, and model fit index Jp from Experiment 3.
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Obs.

1

2

3

4

5

6

Obs.

1

2

3

4

5

6

Obs.

I

2

3

4

5

6

w, sec

With 0 Without 0

G L G L C CR C* CR*

0.21 0.22 0.21 0.22 0.21 0.21 0.21 0.19

0.24 0.22 0.24 0.22 0.24 0.22 0.25 0.22

0.25 0.24 0.24 0.24 0.24 0.22 0.24 0.22

0.22 0.24 0.22 0.25 0.22 0.21 0.24 0.24

0.21 0.24 0.24 0.22 0.22 0.19 0.19 0.18

0.24 0.22 0.22 0.22 0.21 0.21 0.21 0.19

WN, rad/sec

With _ Without 0

G L G L C CR C* CR*

9.7 9.9 10.3 10.3 i0.0 11.3 10.5 8.1

8.0 6.7

5.5 5.3

8.8 9.8

6.4 4.7

4.1 5.1

9.0 8.7 10.3 9.2 10.7 9.9

6.5 6.2 7.3 6.7 7.7 6.8

9.2 9.4 8.9 9.3 10.5 8.6

7.0 7.6 7.8 7.1 7.5 7.6

4.5 4.9 5.3 4.9 5.2 4.8

With 0 Without 0

G L G L C CR C* CR*

0.37 0.46 0.54 0.50 0.45 0.55 0.52 0.46

0.70 0.75 0.75 0.70 0.63 0.58 0.67 0.70

0.55 0.64 0.55 0.50 0.57 0.55 0.62 0.57

0.50 0.72 0.58 0.43 0.44 0.41 0.65 0.42

0.48 0.46 0.42 0.63 0.44 0.62 0.51 0.54

0.43 0.65 0.55 0.51 0.66 0.63 0.63 0.57

Table F.2: Yp parameters 7, O2N, and CN from Experiment 3.
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Obs.

1

2

3

4

5

6

Obs.

1

2

3

4

5

6

wc (rad/sec)

With 0 Without 0

G L G L C CR C* CR*

2.60 2.47 2.60 2.31 2.67 2.86 2.69 2.69

2.16 2.14 2.36 2.33 2.28 2.52 2.39 2.34

1.80 1.58 2.26 2.19 2.28 2.32 2.30 2.21

2.54 2.21 2.58 2.63 2.45 2.68 2.50 2.51

2.47 1.85 2.67 2.48 2.63 2.66 2.64 2.62

1.32 1.69 1.87 1.80 1.92 1.90 1.96 1.88

Cm (deg)

With 0 Without 0

G L G L C CR C* CR*

28.1 27.3 27.1 33.8 25.3 25.1 26.2 27.7

30.8 25.2 25.1 25.8 22.2 23.4 24.0 26.1

33.4 41.2 23.1 24.6 21.5 21.2 20.5 22.8

27.9 31.0 23.3 25.3 25.7 25.3 25.4 36.5

24.2 37.2 17.0 21.9 18.1 20.4 20.8 23.3

48.1 35.6 26.7 30.5 25.9 26.6 26.7 26.4

Table F.3: Crossover frequency and phase margin of YvY_ from Experiment 3.
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F.4 Individual Model Fit Plots

The model fits are shown in the following figures (Figures F.1 through F.48).
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Figure F.I: Experiment 3 model fit results for Operator 1, Perspective Grid Display,

with pitch disturbance. NOTE: the data presented in this plot was collected during

Experiment 2. It is presented here for comparison purposes with Experiment 3.
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Figure F.2: Experiment 3 model fit results for Operator 2, Perspective Grid Dis-

play, with pitch disturbance. NOTE: the data presented in this plot was collected

during Experiment 2. It is presented here to allow better direct comparison with

Experiment 3 data.
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Figure F.3: Experiment 3 model fit results for Operator 3, Perspective Grid Dis-

play, with pitch disturbance. NOTE: the data presented in this plot was collected

during Experiment 2. It is presented here to allow better direct comparison with

Experiment 3 data.
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Figure F.4: Experiment 3 model fit results for Operator 4, Perspective Grid Dis-

play, with pitch disturbance. NOTE: the data presented in this plot was collected

during Experiment 2. It is presented here to allow better direct comparison with

Experiment 3 data.
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Figure F.5: Experiment 3 model fit results for Operator 5, Perspective Grid Dis-

play, with pitch disturbance. NOTE: the data presented in this plot was collected

during Experiment 2. It is presented here to allow better direct comparison with

Experiment 3 data.
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Figure F.6: Experiment 3 model fit results for Operator 6, Perspective Grid Dis-

play, with pitch disturbance. NOTE: the data presented in this plot was collected

during Experiment 2. It is presented here to allow better direct comparison with

Experiment 3 data.
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Figure F.7: Experiment 3 model fit results for Operator 1, Perspective Line Dis-

play, with pitch disturbance. NOTE: the data presented in this plot was collected

during Experiment 2. It is presented here to allow better direct comparison with

Experiment 3 data.
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Figure F.8: Experiment 3 model fit results for Operator 2, Perspective Line Dis-

play, with pitch disturbance. NOTE: the data presented in this plot was collected

during Experiment 2. It is presented here to allow better direct comparison with

Experiment 3 data.
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Figure F.9: Experiment 3 model fit results for Operator 3, Perspective Line Dis-

play, with pitch disturbance. NOTE: the data presented in this plot was collected

during Experiment 2. It is presented here to allow better direct comparison with

Experiment 3 data.
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Figure F.10: Experiment 3 model fit results for Operator 4, Perspective Line Dis-

play, with pitch disturbance. NOTE: the data presented in this plot was collected

during Experiment 2. It is presented here to allow better direct comparison with

Experiment 3 data.
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Experiment 3: Operator 5, Perspective Line (L) (w/pitch disturbance)
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Figure F.11: Experiment 3 model fit results for Operator 5, Perspective Line Dis-

play, with pitch disturbance. NOTE: the data presented in this plot was collected

during Experiment 2. It is presented here to allow better direct comparison with

Experiment 3 data.
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Figure F.12: Experiment 3 model fit results for Operator 6, Perspective Line Dis-

play, with pitch disturbance. NOTE: the data presented in this plot was collected

during Experiment 2. It is presented here to allow better direct comparison with

Experiment 3 data.

291



40 ....

3O

25 .......

"o 20 ......
I

15 .....

:_ 10 ...........

0-.- _

-5

-10

Experiment 3: Operator 1, Perspective Grid (G) (w/o pitch disturbance)

I

! I (

-0.5 0 0.5

Log 10 _luency - rad/sec

Y measured I0 YPpmodel, Jp = 47.9

I I

1 1.5

-2

--4

I

==-5

t-
n

-6

-7

\

\

\

\

\

\

\

\

-8 t I t I J
-1 -0.5 0 0.5 1 1.5

Log 10 frequency- rad/sec

Figure F. 13: Experiment 3 model fit results for Operator 1, Perspective Grid Display,

with no pitch disturbance.
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Figure F.14: Experiment 3 model fit results for Operator 2, Perspective Grid Display,

with no pitch disturbance.

293



4O

35

3O

25

20
I

lO

0

-5

-10

Experiment 3: Operator 3, Perspective Grid (G) (w/o pitch disturbance)

• • •••.

I

-0.5

sJ_

•/

/

I o

I

0 0.5

Log 10 frequency - rad/sec

Y measured

Y; model, Jp = 39.2

I

1

I
I

1.5

-2

-3

"0

I

_-5

e-
ll.

-6

-7

-8

\

\

\

\

\

• .\ ......

\
\

\

=,
I \I I I I

-0.5 0 0.5 1 1.5

Log 10 frequency - rad/sec

Figure F.15: Experiment 3 model fit results for Operator 3, Perspective Grid Display,

with no pitch disturbance.
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Figure F. 16: Experiment 3 model fit results for Operator 4, Perspective Grid Display,

with no pitch disturbance.
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Figure F.17: Experiment 3 model fit results for Operator 5, Perspective Grid Display,

with no pitch disturbance.
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Figure F.18: Experiment 3 model fit results for Operator 6, Perspective Grid Display,

with no pitch disturbance.

297



rn
10

I

o

"E

4O

35:

3O

25

Experiment3: Operator1, PerspectiveLine (L) (w/o pitchdisturbance)

..... , - ..

20 ....... : ......... ' .......

15

10

5

0

-5

/

@/

i

1
• m "_' .... . ......... - • "

I-lO

:1 Y__U I:......... :. _ 0 _ _ Y; model, Jp = 56.3

I I I I.0 0.5 1 1 5-0.5
Log 10 frequency - rad/sec

-2

-3

-4

lo

i

_-5
¢=

J_

-6

-7

-8

\

\

\

\

\

<
\

.X ..... ,

\

\

\

-0.5 0 0.5 1 1.5

Log 10 frequency- racVsec

Figure F.19: Experiment 3 model fit results for Operator 1, Perspective Line Display,

with no pitch disturbance.
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Figure F.20: Experiment 3 model fit results for Operator 2, Perspective Line Display,

with no pitch disturbance.
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Figure F.21: Experiment 3 model fit results for Operator 3, Perspective Line Display,

with no pitch disturbance.
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Figure F.22: Experiment 3 model fit results for Operator 4, Perspective Line Display,

with no pitch disturbance.

301



4O

30

m
20

I

c

-5

-10

Experiment 3: Operator 5, Perspective Line (L) (w/o pitoh dist_rbanoe)

s-

/¢-"

i

..... _ f

I f f

-0.5 0 0.5

Log 10 frequency - racl/sec

Y measured I0 _'; model, Jp= 55.8

I I

1 1,5

-3

-4

"o

I

==-5

e-
n

-6

-2

-7 ._ •

-8
-1

¢
\

• . . , ..
\

\

\

I I I I

-0.5 0 0.5 1.5

Log 10 fiequency - rad/sec

\

\

m\

,\

\

\

_..
\

I

1

Figure F.23: Experiment 3 model fit results for Operator 5, Perspective Line Display,

with no pitch disturbance.

302



4O

35

30

25

m
20

I

10

-5

-10

Experiment 3: Operator 6, Perspective Une (L) (w/o pitch disturbance)

I

/

o Y measured

Y_ model, Jp = 29.4 ,

I I I I

-05 0 0.5 1 1.5

Log 10 frequency - racl/sec

-2

-3

-4

"1o

I

==-5

#.

-6

-7

-8

\

\

\

\

\

\

\

\

I I I I I

-0.5 0 0.5 1 1.5

Log 10 frequency - rad/sec

Figure F.24: Experiment 3 model fit results for Operator 6, Perspective Line Display,
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Figure F.26: Experiment 3 model fit results for Operator 2, Linear Compensatory
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Figure F.30: Experiment 3 model fit results for Operator 6, Linear Compensatory

Display, with no pitch disturbance.

309



25

m
20

I

o

5

0

-5

-10

Experiment 3: Operator 1, Linear Compensatory w/Rate Bar (CR)

........ i-. .¢;
s

..._ : .

Y measured I0 Y; model, Jp = 48.0

I I I I

-0.5 0 0.5

Log 10 frequency - racl/sec

1.5

-6

-7

-8

rrl _

\

\

\

\

\

\

\

\

! I I I

-0.5 0 05 1 1.5

Log 10 frequency - racl/sec

Figure F.31: Experiment 3 model fit results for Operator 1, Linear Compensatory

w/Rate Bar Display, with no pitch disturbance.
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Figure F.32: Experiment 3 model fit results for Operator 2, Linear Compensatory

w/Rate Bar Display, with no pitch disturbance.
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Figure F.36: Experiment 3 model fit results for Operator 6, Linear Compensatory

w/Rate Bar Display, with no pitch disturbance.
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Figure F.37: Experiment 3 model fit results for Operator 1, Nonlinear Compensatory

Display, with no pitch disturbance.
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Figure F.38: Experiment 3 model fit results for Operator 2, Nonlinear Compensatory

Display, with no pitch disturbance.
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Figure F.39: Experiment 3 model fit results for Operator 3, Nonlinear Compensatory

Display, with no pitch disturbance.
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Figure F.40: Experiment 3 model fit results for Operator 4, Nonlinear Compensatory

Display, with no pitch disturbance.
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Experiment 3: Operator 6, Nonlinear Compensatory w/o Rate Bar (C')
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Figure F.42: Experiment 3 model fit results for Operator 6, Nonlinear Compensatory

Display, with no pitch disturbance.
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Figure F.43: Experiment 3 model fit results for Operator 1, Nonlinear Compensatory

w/Rate Bar Display, with no pitch disturbance.
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Figure F.44: Experiment 3 model fit results for Operator 2, Nonlinear Compensatory

w/Rate Bar Display, with no pitch disturbance.
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Figure F.45: Experiment 3 model fit results for Operator 3, Nonlinear Compensatory

w/Rate Bar Display, with no pitch disturbance.
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Experiment 3: Operator 5, Nonlinear Compensatory w/Rate Bar (CR')
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Figure F.47: Experiment 3 model fit results for Operator 5, Nonlinear Compensatory

w/Rate Bar Display, with no pitch disturbance.
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